六、教學(xué)反思 從這節(jié)課的實(shí)施情況看,課堂實(shí)施與原先的公開課教案是比較一致的,效果也是比較好的,主要體現(xiàn)于以下兩點(diǎn): 1、效果得益于“跳出”--跳出教材框框 剛開始備課和試教時(shí),我打算充沛利用教材,根據(jù)教材上的內(nèi)容出示幻燈片讓同學(xué)說一說,但一節(jié)課下來顯得很單調(diào)、信息量很少,體現(xiàn)不出生活中數(shù)的味道。于是我開放教材,跳出教材的框框,課前安排一個(gè)“找生活中的數(shù)”實(shí)踐活動(dòng)把同學(xué)放到社會(huì)生活之林中去,讓他們先找些“野食”吃。這樣,課前在準(zhǔn)備過程當(dāng)中積累的素材多了,同學(xué)的學(xué)習(xí)效益大大提高了。同學(xué)在豐富多彩的實(shí)際生活中自由自在地采擷自身感興趣的“果子”,他們采來的“果子”是絢麗多姿的,然后回到課堂交流,共享到了“果子”的豐富,起到“以一當(dāng)數(shù)十”的作用。 這個(gè)“跳出”戰(zhàn)略,體現(xiàn)了現(xiàn)代科學(xué)“系統(tǒng)論”的理論。系統(tǒng)論認(rèn)為:系統(tǒng)只有開放,不時(shí)吸收外界的信息,才干使自身“有序”。
一、認(rèn)識(shí)射線和直線1.認(rèn)識(shí)線段的特征。(下面的板書填在一個(gè)表里)出示線段(長4分米)。提問:誰來告訴大家,黑板上的圖形叫什么?(板書:線段)提問:線段要怎樣畫?(按學(xué)生的回答畫線段)。畫線段時(shí),開始和結(jié)束都要注意什么?指出:線段是直的,有兩個(gè)端點(diǎn)。是有限長的,我們可以用直尺量出線段的長度。誰能來量一量黑板上的線段,告訴大家,它的長是多少?,F(xiàn)在看老師再來畫一條5分米長的線段。2.認(rèn)識(shí)射線。如果把線段的一端無限延長,(老師延長第二條線段)就得到一條射線。(板書:射線)把射線與線段比一比,它有什么特點(diǎn)?指出:射線也是直的,它只有一個(gè)端點(diǎn)。另一方?jīng)]有端點(diǎn),可以無限地延長下去,是無限長的。直尺或三角尺可以畫出射線:先點(diǎn)一點(diǎn),再沿著尺的一邊畫射線。請大家在練習(xí)本上畫一條射線。
教材分析:例4是讓學(xué)生判斷媽媽要買三種生活用品,帶100元錢夠不夠??梢越Y(jié)合這種生活中經(jīng)常出現(xiàn)的情景,使學(xué)生認(rèn)識(shí)到,在日常生活中,有時(shí)需要進(jìn)行精確計(jì)算,有時(shí)根據(jù)實(shí)際的需要只要估算出大致的結(jié)果就可以了,便于學(xué)生更完整、全面、深刻地認(rèn)識(shí)數(shù)學(xué)的功能。估算的策略是多樣化的,可以用連加,也可以用連減,還可以用加減混合,中間包含了加法的估算和減法的估算。教材上呈現(xiàn)了兩種估算策略,有一名學(xué)生用連減的方法先估算出100-28大約得70,再估算出70-43大約得30,從而判斷用剩下的錢買水杯還夠,兩步計(jì)算中都運(yùn)用了估算。另一名學(xué)生先用加法估算出28+43大約得70,再口算出大約還剩30元,從而得出買水杯還夠的結(jié)論,第一步計(jì)算運(yùn)用了估算,第二步是精確計(jì)算。由于每個(gè)個(gè)體的思維方式和思維水平不同,所采取的估算策略也是不同的,教材上除了提供這兩種估算策略以外,還有一名學(xué)生提出問題:“還可以怎樣算呢?”提示教師在教學(xué)時(shí)讓學(xué)生靈活采用適合自己的估算方法,體現(xiàn)了算法多樣化的思想。
教學(xué)目標(biāo): 1.理解、掌握梯形面積的計(jì)算公式,并能運(yùn)用公式正確計(jì)算梯形的面積。2.發(fā)展學(xué)生空間觀念。培養(yǎng)抽象、概括和解決實(shí)際問題的能力。3.掌握“轉(zhuǎn)化”的思想和方法,進(jìn)一步明白事物之間是相互聯(lián)系,可以轉(zhuǎn)化的。教學(xué)重點(diǎn):理解、掌握梯形面積的計(jì)算公式。教學(xué)難點(diǎn):理解梯形面積公式的推導(dǎo)過程。教學(xué)過程:1.導(dǎo)入新課(1)投影出示一個(gè)三角形,提問:這是一個(gè)三角形,怎樣求它的面積?三角形面積計(jì)算公式是怎樣推導(dǎo)得到的?學(xué)生回答后,指名學(xué)生操作演示轉(zhuǎn)化的方法。(2)展示臺(tái)出示梯形,讓學(xué)生說出它的上底、下底和各是多少厘米。(3)教師導(dǎo)語:我們已學(xué)會(huì)了用轉(zhuǎn)化的方法推導(dǎo)三角形面積的計(jì)算公式,那怎樣計(jì)算梯形的面積呢?這節(jié)課我們就來解決這個(gè)問題。(板書課題,梯形面積的計(jì)算)
教學(xué)目標(biāo):1、通過多種形式的練習(xí),提高學(xué)生的計(jì)算速度和正確率。2、培養(yǎng)學(xué)生看圖表的能力,初步滲透統(tǒng)計(jì)思想。3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,同時(shí)培養(yǎng)學(xué)生的數(shù)感。教學(xué)重、難點(diǎn):熟練掌握計(jì)算方法并能夠進(jìn)行正確的計(jì)算,能夠有效的提高計(jì)算速度及正確率教學(xué)過程:一、基本練習(xí)1、口算10-38+49-1 9-88+215+38+77+55+6 3+911-19+68+86+78+6 9+82+93+102、()里應(yīng)填什么數(shù)?(1)比9大2的數(shù)是(),比7多4的數(shù)是()。(2)寫出得數(shù)是13的四道算式?( )、()、( )、()(3)練習(xí)9+()=13 8+()=1512-()=2()+7=14()+()=12 ()+()=19二、指導(dǎo)練習(xí)練習(xí)二十一第4題(1)學(xué)生看書,弄清題目的意思。問:這題是什么意思?(2)分組討論,并派代表說一說。(3)教師板書,引導(dǎo)學(xué)生看統(tǒng)計(jì)表。指導(dǎo)學(xué)生看表:表的第一豎行畫有皮球、毽子、跳繩;第二豎行上面寫著“一班有”,下面的數(shù)就是一班有這三種體育用品的數(shù)量,即一班有7個(gè)皮球、5個(gè)毽子、4條跳繩;
●教學(xué)內(nèi)容:教科書第27頁的內(nèi)容。●教學(xué)目標(biāo):①通過創(chuàng)設(shè)具體的情境,使學(xué)生初步學(xué)會(huì)加法的驗(yàn)算,并通過加法驗(yàn)算方法的交流、讓學(xué)生體會(huì)算法的多樣化。②培養(yǎng)學(xué)生探索合作交流的意識(shí)和能力。③讓學(xué)生用所學(xué)到的驗(yàn)算知識(shí)去解決生活中的問題,體會(huì)用數(shù)學(xué)的樂趣?!窠叹邷?zhǔn)備:老師準(zhǔn)備掛圖或課件?!窠虒W(xué)過程:創(chuàng)設(shè)情境、導(dǎo)入新課。師:同學(xué)們,你們與爸爸、媽媽去超市買過東西嗎?生:互相說說,再請同學(xué)發(fā)表意見。師:(掛圖1)我們來看掛圖,小明和媽媽去超市買東西,從圖1中你看到了什么?生1:從圖1中我看到了小明媽媽買了一套135元的運(yùn)動(dòng)服和一雙48元的運(yùn)動(dòng)鞋。生2:從圖1中我看到小明媽媽給了售貨員200元。生3:要知道一套運(yùn)動(dòng)服和一雙運(yùn)動(dòng)鞋一共要多少元?應(yīng)用加法計(jì)算。師:全班動(dòng)手計(jì)算。板書:135+48=183(元)
教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會(huì)求拋物線與坐標(biāo)軸交點(diǎn)坐標(biāo),會(huì)結(jié)合函數(shù)圖象求方程的根.教學(xué)重點(diǎn):二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點(diǎn):用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點(diǎn)坐標(biāo); (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點(diǎn)的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個(gè)根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點(diǎn)坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時(shí)的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
解:(1)設(shè)第一次落地時(shí),拋物線的表達(dá)式為y=a(x-6)2+4,由已知:當(dāng)x=0時(shí),y=1,即1=36a+4,所以a=-112.所以函數(shù)表達(dá)式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個(gè)單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進(jìn)行數(shù)學(xué)建模,將實(shí)際問題中的條件轉(zhuǎn)化為數(shù)學(xué)問題中的條件.常有兩個(gè)步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實(shí)際問題轉(zhuǎn)化為純數(shù)學(xué)問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.
問題2、如何用測角儀測量一個(gè)低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時(shí),轉(zhuǎn)動(dòng)度盤,使度盤的直徑對準(zhǔn)低處的目標(biāo),記下此時(shí)鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動(dòng)三:測量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無障礙地直接測得測點(diǎn)與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測點(diǎn)A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點(diǎn)A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時(shí),它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因?yàn)镹E=AC=a,所以MN=ME+EN=l·tanα+a.
(8)物價(jià)部門規(guī)定,此新型通訊產(chǎn)品售價(jià)不得高于每件80元。在此情況下,售價(jià)定為多少元時(shí),該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計(jì)劃年初投入進(jìn)貨成本m不超過200萬元,請你分析一下,售價(jià)定為多少元,公司獲利最大?售價(jià)定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進(jìn)時(shí)的單價(jià)是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?
(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進(jìn)行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個(gè)解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時(shí),y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時(shí),y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時(shí),y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當(dāng)x=45時(shí),y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時(shí),y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時(shí),y最大=6000.綜上所述,銷售該商品第45天時(shí),當(dāng)天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計(jì)算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
一、情境導(dǎo)入1.計(jì)算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項(xiàng)式乘以單項(xiàng)式的運(yùn)算歸納出多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則嗎?二、合作探究探究點(diǎn):多項(xiàng)式除以單項(xiàng)式【類型一】 直接利用多項(xiàng)式除以單項(xiàng)式進(jìn)行計(jì)算計(jì)算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項(xiàng)式除以單項(xiàng)式,先用多項(xiàng)式的每一項(xiàng)分別除以這個(gè)單項(xiàng)式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結(jié):多項(xiàng)式除以單項(xiàng)式,先把多項(xiàng)式的每一項(xiàng)都分別除以這個(gè)單項(xiàng)式,然后再把所得的商相加.
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項(xiàng),也不含x項(xiàng),∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結(jié):解決此類問題首先要利用多項(xiàng)式乘法法則計(jì)算出展開式,合并同類項(xiàng)后,再根據(jù)不含某一項(xiàng),可得這一項(xiàng)系數(shù)等于零,再列出方程解答.三、板書設(shè)計(jì)1.多項(xiàng)式與多項(xiàng)式的乘法法則:多項(xiàng)式和多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)與另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.2.多項(xiàng)式與多項(xiàng)式乘法的應(yīng)用本節(jié)知識(shí)的綜合性較強(qiáng),要求學(xué)生熟練掌握前面所學(xué)的單項(xiàng)式與單項(xiàng)式相乘及單項(xiàng)式與多項(xiàng)式相乘的知識(shí),同時(shí)為了讓學(xué)生理解并掌握多項(xiàng)式與多項(xiàng)式相乘的法則,教學(xué)中一定要精講精練,讓學(xué)生從練習(xí)中再次體會(huì)法則的內(nèi)容,為以后的學(xué)習(xí)奠定基礎(chǔ)
光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉(zhuǎn)化為單項(xiàng)式相除問題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結(jié):解整式除法的實(shí)際應(yīng)用題時(shí),應(yīng)分清何為除式,何為被除式,然后應(yīng)當(dāng)單項(xiàng)式除以單項(xiàng)式法則計(jì)算.三、板書設(shè)計(jì)1.單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則:單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.2.單項(xiàng)式除以單項(xiàng)式的應(yīng)用在教學(xué)過程中,通過生活中的情景導(dǎo)入,引導(dǎo)學(xué)生根據(jù)單項(xiàng)式乘以單項(xiàng)式的乘法運(yùn)算推導(dǎo)出其逆運(yùn)算的規(guī)律,在探究的過程中經(jīng)歷數(shù)學(xué)概念的生成過程,從而加深印象
解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結(jié):掌握長方形的面積公式和單項(xiàng)式乘單項(xiàng)式法則是解題的關(guān)鍵.三、板書設(shè)計(jì)1.單項(xiàng)式乘以單項(xiàng)式的運(yùn)算法則:單項(xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個(gè)單項(xiàng)式里面含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.2.單項(xiàng)式乘以單項(xiàng)式的應(yīng)用本課時(shí)的重點(diǎn)是讓學(xué)生理解單項(xiàng)式的乘法法則并能熟練應(yīng)用.要求學(xué)生在乘法的運(yùn)算律以及冪的運(yùn)算律的基礎(chǔ)上進(jìn)行探究.教師在課堂上應(yīng)該處于引導(dǎo)位置,鼓勵(lì)學(xué)生“試一試”,學(xué)生通過動(dòng)手操作,能夠更為直接的理解和應(yīng)用該知識(shí)點(diǎn)
解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉(zhuǎn)化為三角形后木架的形狀就不變了.根據(jù)具體多邊形轉(zhuǎn)化為三角形的經(jīng)驗(yàn)及題中所加木條可找到一般規(guī)律.解:過n邊形的一個(gè)頂點(diǎn)可以作(n-3)條對角線,把多邊形分成(n-2)個(gè)三角形,所以,要使一個(gè)n邊形木架不變形,至少需要(n-3)根木條固定.方法總結(jié):將多邊形轉(zhuǎn)化為三角形時(shí),所需要的木條根數(shù),可從具體到一般去發(fā)現(xiàn)規(guī)律,然后驗(yàn)證求解.三、板書設(shè)計(jì)1.邊邊邊:三邊對應(yīng)相等的兩個(gè)三角形全等,簡寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動(dòng)入手,有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對新知識(shí)的理解和掌握.從課堂教學(xué)的情況來看,學(xué)生對“邊邊邊”掌握較好,達(dá)到了教學(xué)的預(yù)期目的.存在的問題是少數(shù)學(xué)生在輔助線的構(gòu)造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學(xué)中進(jìn)一步加強(qiáng)鞏固和訓(xùn)練
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設(shè)AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設(shè)計(jì)1.邊角邊:兩邊及其夾角分別相等的兩個(gè)三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應(yīng)相等的兩個(gè)三角形不一定全等.2.全等三角形判定與性質(zhì)的綜合運(yùn)用本節(jié)課從操作探究入手,具有較強(qiáng)的操作性和直觀性,有利于學(xué)生從直觀上積累感性認(rèn)識(shí),從而有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對新知識(shí)的理解和掌握.從課堂教學(xué)的情況來看,學(xué)生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時(shí)不會(huì)正確分類,需要在今后的教學(xué)和作業(yè)中進(jìn)一步加強(qiáng)分類思想的鞏固和訓(xùn)練
1.理解并掌握三角形全等的判定方法——“角邊角”“角角邊”;(重點(diǎn))2.能運(yùn)用“角邊角”“角角邊”判定方法解決有關(guān)問題.(難點(diǎn)) 一、情境導(dǎo)入如圖所示,某同學(xué)把一塊三角形的玻璃不小心打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是帶哪塊去?學(xué)生活動(dòng):學(xué)生先自主探究出答案,然后再與同學(xué)進(jìn)行交流.教師點(diǎn)撥:顯然僅僅帶①或②是無法配成完全一樣的玻璃的,而僅僅帶③則可以,為什么呢?本節(jié)課我們繼續(xù)研究三角形全等的判定方法.二、合作探究探究點(diǎn)一:全等三角形判定定理“ASA”如圖,AD∥BC,BE∥DF,AE=CF,試說明:△ADF≌△CBE.解析:根據(jù)平行線的性質(zhì)可得∠A=∠C,∠DFE=∠BEC,再根據(jù)等式的性質(zhì)可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.
【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點(diǎn)C為圓心,以b為半徑畫弧,再以B為圓心,以c為半徑畫弧,兩弧相交于點(diǎn)A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結(jié):已知三角形三邊的長,根據(jù)全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當(dāng)于確定三角形三個(gè)頂點(diǎn)的位置.因此可先確定三角形的一條邊(即兩個(gè)頂點(diǎn)),再分別以這條邊的兩個(gè)端點(diǎn)為圓心,以已知線段長為半徑畫弧,兩弧的交點(diǎn)即為另一個(gè)頂點(diǎn).三、板書設(shè)計(jì)1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學(xué)習(xí)了有關(guān)三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個(gè)角等于已知角.作圖時(shí),鼓勵(lì)學(xué)生一邊作圖,一邊用幾何語言敘述作法,培養(yǎng)學(xué)生的動(dòng)手能力、語言表達(dá)能力
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計(jì)算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計(jì)算發(fā)現(xiàn)規(guī)律進(jìn)而得出答案.解:(1)因式分解的方法是提公因式法,共應(yīng)用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應(yīng)用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認(rèn)真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書設(shè)計(jì)1.提公因式分解因式的一般步驟:(1)觀察;(2)適當(dāng)變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應(yīng)用本課時(shí)是在上一課時(shí)的基礎(chǔ)上進(jìn)行的拓展延伸,在教學(xué)時(shí)要給學(xué)生足夠主動(dòng)權(quán)和思考空間,突出學(xué)生在課堂上的主體地位,引導(dǎo)和鼓勵(lì)學(xué)生自主探究,在培養(yǎng)學(xué)生創(chuàng)新能力的同時(shí)提高學(xué)生的邏輯思維能力.