解:設(shè)甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結(jié):設(shè)未知數(shù)時,一般是求什么,設(shè)什么,并且所列方程的個數(shù)與未知數(shù)的個數(shù)相等.解這類問題的應(yīng)用題,要抓住題中反映數(shù)量關(guān)系的關(guān)鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關(guān)系的關(guān)鍵字的含義.三、板書設(shè)計列方程組,解決問題)一般步驟:審、設(shè)、列、解、驗、答關(guān)鍵:找等量關(guān)系通過“雞兔同籠”,把同學(xué)們帶入古代的數(shù)學(xué)問題情景,學(xué)生體會到數(shù)學(xué)中的“趣”;進一步強調(diào)數(shù)學(xué)與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實際價值,培養(yǎng)學(xué)生的人文精神;進一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心,進一步形成積極參與數(shù)學(xué)活動、主動與他人合作交流的意識.
1.會用計算器求平方根和立方根;(重點)2.運用計算器探究數(shù)字規(guī)律,提高推理能力.一、情境導(dǎo)入前面我們通過平方和立方運算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點一:利用計算器進行開方運算 用計算器求6+7的值.解:按鍵順序為■6+7=SD,顯示結(jié)果為:9.449489743.方法總結(jié):當(dāng)被開方數(shù)不是一個數(shù)時,輸入時一定要按鍵.解本題時常出現(xiàn)的錯誤是:■6+7=SD,錯的原因是被開方數(shù)是6,而不是6與7的和,這樣在輸入時,對“6+7”進行開方,使得計算的是6+7而不是6+7,從而導(dǎo)致錯誤.K探究點二:利用科學(xué)計算器比較數(shù)的大小利用計算器,比較下列各組數(shù)的大?。?1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結(jié)果為1.414213562.按鍵順序:SHIFT■5=,顯示結(jié)果為1.709975947.所以2<35.
方法總結(jié):垂徑定理雖是圓的知識,但也不是孤立的,它常和三角形等知識綜合來解決問題,我們一定要把知識融會貫通,在解決問題時才能得心應(yīng)手.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第2題【類型三】 動點問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個動點,求OP的長度范圍.解析:當(dāng)點P處于弦AB的端點時,OP最長,此時OP為半徑的長;當(dāng)OP⊥AB時,OP最短,利用垂徑定理及勾股定理可求得此時OP的長.解:作直徑MN⊥弦AB,交AB于點D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長、最短時的情況,靈活利用垂徑定理求解.容易出錯的地方是不能確定最值時的情況.
由于題目較簡單,所以學(xué)生分析解答時很有信心,且正確率也比較高,同時也進一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.六、歸納總結(jié):活動內(nèi)容:學(xué)生歸納總結(jié)本節(jié)課所學(xué)知識:1.會借線段圖分析行程問題.2.各種行程問題中的規(guī)律及等量關(guān)系.同向追及問題:①同時不同地——甲路程+路程差=乙路程; 甲時間=乙時間.②同地不同時——甲時間+時間差=乙時間; 甲路程=乙路程.相向的相遇問題:甲路程+乙路程=總路程; 甲時間=乙時間.目的:強調(diào)本課的重點內(nèi)容是要學(xué)會借線段圖來分析行程問題,并能掌握各種行程問題中的規(guī)律及等量關(guān)系.引導(dǎo)學(xué)生自己對所學(xué)知識和思想方法進行歸納和總結(jié),從而形成自己對數(shù)學(xué)知識的理解和解決問題的方法策略.
解:(1)設(shè)x分鐘后兩人第一次相遇,由題意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:兩人一共跑了5圈.(2)設(shè)x分鐘后兩人第一次相遇,由題意,得360x+240x=400.解得x=23(分鐘)=40(秒).答:40秒后兩人第一次相遇.方法總結(jié):環(huán)形問題中的相等關(guān)系:兩個人同地背向而行:相遇問題(首次相遇),甲的行程+乙的行程=一圈周長;兩個人同地同向而行:追及問題(首次追上),甲的行程-乙的行程=一圈周長.三、板書設(shè)計追趕小明→行程問題→相遇問題追及問題環(huán)形問題教學(xué)過程中,通過對開放性問題的探討與交流,體驗生活中數(shù)學(xué)的應(yīng)用與價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新意識、團隊精神和克服困難的勇氣.
[設(shè)計說明]:只給出情景故事,感知了一個大數(shù),這樣還不能引起學(xué)生對大數(shù)的深刻認(rèn)識,所以再給出宇宙星空中的這些大數(shù),讓學(xué)生讀讀、看看這些數(shù),引起學(xué)生強烈的認(rèn)知上的沖突,形成一種心理上的想讀、想寫的求知欲望。(二)、引出問題、探索新知在上面的例子中,我們遇到了幾個很大的數(shù),看起來、讀起來、寫起來都不方便,有沒有簡單的表示法呢?分以下步驟完成。1、回憶100 ,1000,10000,能寫成10( )2、300=3×100=3×10( )3000=3×1000=3×10()30000=3×10000=3×10()3、再由學(xué)生完成上面4個例子中的數(shù)的表示。(學(xué)生對160 000 000 000這個數(shù)可能表示為、16×1010,教師要利用學(xué)生這種錯誤,強調(diào)a的范圍)4、教師給出科學(xué)記數(shù)法表示:a×10( )(1≤a<10)。[設(shè)計說明]:通過層層遞進的探究設(shè)計,啟發(fā)學(xué)生成功地發(fā)現(xiàn)“科學(xué)記數(shù)法”的表示方法,同時又通過學(xué)生示錯,讓學(xué)生記住a的范圍,體現(xiàn)了以學(xué)生為主的探究式教學(xué)。
1、 教材的地位和作用本課教材所處位置,是小學(xué)所學(xué)算術(shù)數(shù)之后數(shù)的范圍的第一次擴充,是算術(shù)數(shù)到有理數(shù)的銜接與過渡,并且是以后學(xué)習(xí)數(shù)軸、相反數(shù)、絕對值以及有理數(shù)運算的基礎(chǔ).2、 教學(xué)目標(biāo)①理解有理數(shù)產(chǎn)生的必然性、合理性及有理數(shù)的分類;②能辨別正、負(fù)數(shù),感受規(guī)定正、負(fù)的相對性;③體驗中國古代在數(shù)的發(fā)展方面的貢獻.3、 教學(xué)重點和難點教學(xué)重點:理解正數(shù)和負(fù)數(shù)的概念和有理數(shù)概念.教學(xué)難點:對負(fù)數(shù)概念的理解和有理數(shù)的分類.二、 教學(xué)分析鑒于初一年級學(xué)生的年齡特點,他們對概念的理解能力不強,精神不能長時間集中,但思維比較活躍。我決定采取啟發(fā)式教學(xué)法及情感教學(xué),創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生主動思考,用大量的實例和生動的語言激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)節(jié)學(xué)習(xí)情緒。
(五)、反饋矯正,注重參與: 為鞏固本節(jié)的教學(xué)重點讓學(xué)生獨立完成: 1、課本23頁練習(xí)1、2 2、課本23頁3題的(給全體學(xué)生以示范性讓一個同學(xué)板書) 為向?qū)W生進一步滲透數(shù)形結(jié)合的思想讓學(xué)生討論: 3、數(shù)軸上的點P與表示有理數(shù)3的點A距離是2, (1)試確定點P表示的有理數(shù); (2)將A向右移動2個單位到B點,點B表示的有理數(shù)是多少? (3)再由B點向左移動9個單位到C點,則C點表示的有理數(shù)是多少? 先讓學(xué)生通過小組討論得出結(jié)果,通過以上練習(xí)使學(xué)生在掌握知識的基礎(chǔ)上達到靈活運用,形成一定的能力。 (六)、歸納小結(jié),強化思想: 根據(jù)學(xué)生的特點,師生共同小結(jié): 1、為了鞏固本節(jié)課的教學(xué)重點提問:你知道什么是數(shù)軸嗎?你會畫數(shù)軸嗎?這節(jié)課你學(xué)會了用什么來表示有理數(shù)? 2、數(shù)軸上,會不會有兩個點表示同一個有理數(shù)?會不會有一個點表示兩個不同的有理數(shù)? 讓學(xué)生牢固掌握一個有理數(shù)只對應(yīng)數(shù)軸上的一個點,并能說出數(shù)軸上已知點所表示的有理數(shù)。
五、課堂設(shè)計理念本節(jié)課著力體現(xiàn)以下幾個方面:1、突出問題的應(yīng)用意識。在各個環(huán)節(jié)的安排上都設(shè)計成一個個問題,使學(xué)生能圍繞問題展開討思考、討論,進行學(xué)習(xí)。2、體現(xiàn)學(xué)生的主體意識。讓學(xué)生通過列算式與列方程的比較,分別歸納出它們的特點,從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進步;讓學(xué)生通過合作交流,得出問題的不同解法;讓學(xué)生對一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點等進行歸納。3、體現(xiàn)學(xué)生思維的層次性。教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決問題,然后再引導(dǎo)學(xué)生列出含未知數(shù)的式了,尋找相等關(guān)系列出方程,在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中都注意了學(xué)生思維的層次性。4、滲透建模思想。把實際問題中的數(shù)量關(guān)系用方程形式表示出來,就是建立一種數(shù)學(xué)模型,教師有意識地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實際問題抽象出方程模型的能力。
煤的價格為400元/噸,生產(chǎn)1噸甲產(chǎn)品除需原料費用外,還需其他費用400元,甲產(chǎn)品每噸售價4600元;生產(chǎn)1噸乙產(chǎn)品除原料費用外,還需其他費用500元,乙產(chǎn)品每噸售價5500元.現(xiàn)將該礦石原料全部用完,設(shè)生產(chǎn)甲產(chǎn)品x噸,乙產(chǎn)品m噸,公司獲得的總利潤為y元.(1)寫出m與x的關(guān)系式;(2)寫出y與x的函數(shù)關(guān)系式.(不要求寫自變量的取值范圍)解析:(1)因為礦石的總量一定,當(dāng)生產(chǎn)的甲產(chǎn)品的數(shù)量x變化時,那么乙產(chǎn)品的產(chǎn)量m將隨之變化,m和x是動態(tài)變化的兩個量;(2)題目中的等量關(guān)系為總利潤y=甲產(chǎn)品的利潤+乙產(chǎn)品的利潤.解:(1)因為4m+10x=300,所以m=150-5x2.(2)生產(chǎn)1噸甲產(chǎn)品獲利為4600-10×200-4×400-400=600(元);生產(chǎn)1噸乙產(chǎn)品獲利為5500-4×200-8×400-500=1000(元).所以y=600x+1000m.將m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法總結(jié):根據(jù)條件求一次函數(shù)的關(guān)系式時,要找準(zhǔn)題中所給的等量關(guān)系,然后求解.
由②得y=23x+23.在同一直角坐標(biāo)系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點坐標(biāo)為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結(jié):用畫圖象的方法可以直觀地獲得問題的結(jié)果,但不是很準(zhǔn)確.三、板書設(shè)計1.二元一次方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個方程化為一次函數(shù)的形式;(2)作圖:在同一坐標(biāo)系中作出兩個函數(shù)的圖象;(3)觀察圖象,找出交點的坐標(biāo);(4)寫出方程組的解.通過引導(dǎo)學(xué)生自主學(xué)習(xí)探索,進一步揭示了二元一次方程和函數(shù)圖象之間的對應(yīng)關(guān)系,很自然的得到二元一次方程組的解與兩條直線的交點之間的對應(yīng)關(guān)系.進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識,充分提高學(xué)生數(shù)形結(jié)合的能力,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.
2. 在彈性限度內(nèi),彈簧的長度y(厘米)是所掛物體質(zhì)量x(千克)的一次函數(shù).當(dāng)所掛物體的質(zhì)量為1千克時彈簧長15厘米;當(dāng)所掛物體的質(zhì)量為3千克時,彈簧長16厘米.寫出y與x之間的函數(shù)關(guān)系式,并求當(dāng)所掛物體的質(zhì)量為4千克時彈簧的長度.答案: 當(dāng)x=4是,y= 3. 教材例2的再探索:我邊防局接到情報,近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時間t(分)之間的關(guān)系.當(dāng)時間t等于多少分鐘時,我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(jié)(2分鐘,教師引導(dǎo)學(xué)生總結(jié))內(nèi)容:一、函數(shù)與方程之間的關(guān)系.二、在解決實際問題時從不同角度思考問題,就會得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達式: ;2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b,進而得到一次函數(shù)的表達式.
小劉同學(xué)用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設(shè)1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個相等關(guān)系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢數(shù)+2元賀卡錢數(shù)=10(元).設(shè)1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結(jié):要判斷哪個方程組符合題意,可從題目中找出兩個相等關(guān)系,然后代入未知數(shù),即可得到方程組,進而得到正確答案.三、板書設(shè)計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數(shù)學(xué)模型,學(xué)會逐步掌握基本的數(shù)學(xué)知識和方法,形成良好的數(shù)學(xué)思維習(xí)慣和應(yīng)用意識,提高解決問題的能力,感受數(shù)學(xué)創(chuàng)造的樂趣,增進學(xué)好數(shù)學(xué)的信心,增加對數(shù)學(xué)較全面的體驗和理解.
第一環(huán)節(jié):情境引入內(nèi)容:(一) 情境1實物投影,并呈現(xiàn)問題:在一望無際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個.”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識幫助小馬解決問題呢?請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言).教師注意引導(dǎo)學(xué)生設(shè)兩個未知數(shù),從而得出二元一次方程.這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程 ,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍, 得方程: .
方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時,要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關(guān)系.
意圖:課后作業(yè)設(shè)計包括了三個層面:作業(yè)1是為了鞏固基礎(chǔ)知識而設(shè)計;作業(yè)2是為了擴展學(xué)生的知識面;作業(yè)3是為了拓廣知識,進行課后探究而設(shè)計,通過此題可讓學(xué)生進一步認(rèn)識勾股定理的前提條件.效果:學(xué)生進一步加強對本課知識的理解和掌握.教學(xué)設(shè)計反思(一)設(shè)計理念依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的整個過程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進行主動學(xué)習(xí).教師只在學(xué)生遇到困難時,進行引導(dǎo)或組織學(xué)生通過討論來突破難點.(二)突出重點、突破難點的策略為了讓學(xué)生在學(xué)習(xí)過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過幾個探究活動引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學(xué)生通過觀察圖形,計算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進而得到勾股定理.
目的:課后作業(yè)設(shè)計包括了兩個層面:作業(yè)1是為了鞏固基礎(chǔ)知識而設(shè)計;作業(yè)2是為了擴展學(xué)生的知識面;拓廣知識,增加學(xué)生對數(shù)學(xué)問題本質(zhì)的思考而設(shè)計,通過此題可讓學(xué)生進一步運用三元一次方程組解決問題.教學(xué)設(shè)計反思1.本節(jié)課的內(nèi)容屬于選修學(xué)習(xí)的內(nèi)容,主要突出對數(shù)學(xué)興趣濃厚、學(xué)有余力的同學(xué)進一步探究和拓展使用,在數(shù)學(xué)方法和思想方面需重點引導(dǎo),通過引導(dǎo),使學(xué)生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導(dǎo),并且比較各種解題方法之間的優(yōu)劣,總結(jié)出解多元方程的基本方法.2.作為選修課,在內(nèi)容上要讓學(xué)生理解三元一次方程組概念的同時,要讓學(xué)生理解為什么要用三元一次方程組甚至多元方程組去求解實際問題的必要性,從而掌握本堂課的基礎(chǔ)知識.在教學(xué)的過程中,要讓學(xué)生充分理解對復(fù)雜的實際問題方程中元越多,等量關(guān)系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點和缺點,有關(guān)這一方面的題目要讓學(xué)生充分討論、交流、合作,其理解才會深刻.
意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學(xué)生的愛國熱情;(2)學(xué)生加強了對數(shù)學(xué)史的了解,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣;(3)通過讓部分學(xué)生搜集材料,展示材料,既讓學(xué)生得到充分的鍛煉,同時也活躍了課堂氣氛.效果:學(xué)生熱情高漲,對勾股定理的歷史充滿了濃厚的興趣,同時也為中國古代數(shù)學(xué)的成就感到自豪.也有同學(xué)提出:當(dāng)代中國數(shù)學(xué)成就不夠強,還應(yīng)發(fā)奮努力.有同學(xué)能意識這一點,這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問:通過這節(jié)課的學(xué)習(xí),你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識要點,數(shù)形結(jié)合的思想方法;(2)教師了解學(xué)生對本節(jié)課的感受并進行總結(jié);(3)培養(yǎng)學(xué)生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動學(xué)生學(xué)習(xí)的積極性,所以學(xué)生談的收獲很多,包括利用拼圖驗證勾股定理中蘊含的數(shù)形結(jié)合思想,學(xué)生對勾股定理的歷史的感悟及對勾股定理應(yīng)用的認(rèn)識等等.
探究點二:勾股定理的簡單運用如圖,高速公路的同側(cè)有A,B兩個村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現(xiàn)要在高速公路上A1、B1之間設(shè)一個出口P,使A,B兩個村莊到P的距離之和最短,求這個最短距離和.解析:運用“兩點之間線段最短”先確定出P點在A1B1上的位置,再利用勾股定理求出AP+BP的長.解:作點B關(guān)于MN的對稱點B′,連接AB′,交A1B1于P點,連BP.則AP+BP=AP+PB′=AB′,易知P點即為到點A,B距離之和最短的點.過點A作AE⊥BB′于點E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結(jié):解這類題的關(guān)鍵在于運用幾何知識正確找到符合條件的P點的位置,會構(gòu)造Rt△AB′E.三、板書設(shè)計勾股定理驗證拼圖法面積法簡單應(yīng)用通過拼圖驗證勾股定理并體會其中數(shù)形結(jié)合的思想;應(yīng)用勾股定理解決一些實際問題,學(xué)會勾股定理的應(yīng)用并逐步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力,為后面的學(xué)習(xí)打下基礎(chǔ).
方法總結(jié):利用三角形三邊的數(shù)量關(guān)系來判定直角三角形,從而推出兩線的垂直關(guān)系.探究點二:勾股數(shù)下列幾組數(shù)中是勾股數(shù)的是________(填序號).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數(shù)的定義,不是勾股數(shù);第③④組不是正整數(shù),不是勾股數(shù);只有第②組的9,40,41是勾股數(shù).故填②.方法總結(jié):判斷勾股數(shù)的方法:必須滿足兩個條件:一要符合等式a2+b2=c2;二要都是正整數(shù).三、板書設(shè)計勾股定理的逆定理: 如果一個三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.勾股數(shù):滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力、歸納能力.體驗生活中數(shù)學(xué)的應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣.