三、鞏固練習(xí),拓展應(yīng)用練習(xí)是學(xué)生領(lǐng)悟知識(shí),形成技能,發(fā)展智力的重要手段,我遵循“由淺入深,循序漸進(jìn)”的原則設(shè)計(jì)了以下不同層次的練習(xí)。1、基本練習(xí)自主練習(xí)第1題填一填,借助直觀圖,鞏固分?jǐn)?shù)乘法的意義和計(jì)算方法。2、提高練習(xí)自主練習(xí)2、4題。本題的設(shè)計(jì),目的是使學(xué)生除了掌握基本的數(shù)學(xué)知識(shí)和技能外,初步學(xué)會(huì)從數(shù)學(xué)的角度去觀察事物、思考問(wèn)題,同時(shí),也讓學(xué)生感受到生活中處處有數(shù)學(xué),從而激發(fā)對(duì)數(shù)學(xué)的興趣,以及學(xué)好數(shù)學(xué)的愿望。四、課堂小結(jié),升華認(rèn)識(shí)引導(dǎo)學(xué)生回憶總結(jié):這節(jié)課你們都知道了些什么?你有哪些收獲?這節(jié)課你表現(xiàn)得怎樣?等等,這樣的小結(jié)有利于學(xué)生鞏固本節(jié)課的重點(diǎn),獲得成功的體驗(yàn),激發(fā)學(xué)習(xí)的熱情。五、板書(shū)設(shè)計(jì):簡(jiǎn)單明了,能系統(tǒng)地反映出本課的重、難點(diǎn)。有利于學(xué)生形成一定的知識(shí)網(wǎng)絡(luò)。都起到了“畫(huà)龍點(diǎn)睛”的作用。
2.過(guò)程與方法經(jīng)歷與他人交流算法的過(guò)程,能有條理地?cái)⑹鲎约旱乃伎歼^(guò)程,能計(jì)算100以?xún)?nèi)數(shù)的連加運(yùn)算。3.情感態(tài)度和價(jià)值觀在計(jì)算過(guò)程中初步養(yǎng)成認(rèn)真、細(xì)心、耐心檢查的良好學(xué)習(xí)習(xí)慣?!窘虒W(xué)重點(diǎn)】 會(huì)分析數(shù)量關(guān)系,并計(jì)算100以?xún)?nèi)數(shù)的加法?!窘虒W(xué)難點(diǎn)】 運(yùn)用100以?xún)?nèi)數(shù)的加法解決簡(jiǎn)單的實(shí)際問(wèn)題?!窘虒W(xué)方法】 合作、探究、交流【課前準(zhǔn)備】 多媒體課件【課時(shí)安排】 1課時(shí)【教學(xué)過(guò)程】一、創(chuàng)設(shè)情境、引出問(wèn)題1.出示情境圖:同學(xué)們,你們喜歡套圈游戲嗎?你們看,淘氣和笑笑也來(lái)參加好玩的套圈游戲,讓我們一起來(lái)看一看。這個(gè)游戲是怎么玩的,你看懂了嗎?從每個(gè)小動(dòng)物前面的得分我們知道離淘氣和笑笑越遠(yuǎn)的小動(dòng)物套中后得分越高。而且機(jī)靈狗告訴我們規(guī)則是“每人投3次,每套中的得0分,總分高的獲勝”。判斷勝負(fù),有時(shí)不光要看勝的場(chǎng)次,還要看什么?分?jǐn)?shù),分高者勝。要引導(dǎo)學(xué)生明白得分是根據(jù)圖中套中的小動(dòng)物得到的。機(jī)靈狗說(shuō)的是什么意思,誰(shuí)聽(tīng)懂了?2.引導(dǎo)學(xué)生有序觀察圖意,并讓學(xué)生看圖說(shuō)一說(shuō):從圖中你知道哪些數(shù)學(xué)信息?
(1)示例一(橫向聯(lián)想) 李白的送別詩(shī):①“思君不見(jiàn)下渝州”,表達(dá)依依惜別的無(wú)限情思,可謂語(yǔ)短情長(zhǎng)。②“仍憐故鄉(xiāng)水,萬(wàn)里送行舟”,意思是“我”還是憐愛(ài)故鄉(xiāng)的水,流過(guò)萬(wàn)里送“我”遠(yuǎn)行。這一句運(yùn)用了擬人的修辭手法,將故鄉(xiāng)水?dāng)M人化,借寫(xiě)故鄉(xiāng)水有情,不遠(yuǎn)萬(wàn)里,依依不舍送“我”遠(yuǎn)別故鄉(xiāng),表達(dá)了詩(shī)人離開(kāi)故鄉(xiāng)時(shí)依依不舍、思念故鄉(xiāng)的感情。③“孤帆遠(yuǎn)影碧空盡,唯見(jiàn)長(zhǎng)江天際流?!边@兩句看起來(lái)似乎是寫(xiě)景,但在寫(xiě)景中包含著一個(gè)充滿(mǎn)詩(shī)意的細(xì)節(jié)。李白一直把朋友送上船,船已經(jīng)揚(yáng)帆而去,而他還在江邊目送遠(yuǎn)去的船帆。李白望著帆影,一直看到帆影逐漸模糊,消失在碧空的盡頭,可見(jiàn)目送時(shí)間之長(zhǎng)。帆影已經(jīng)消失了,然而李白還在翹首凝望,這才注意到一江春水,在浩浩蕩蕩地流向遠(yuǎn)遠(yuǎn)的水天交接之處?!拔ㄒ?jiàn)長(zhǎng)江天際流”,是眼前景象,可是誰(shuí)又能說(shuō)是單純地寫(xiě)景呢?李白對(duì)朋友的一片深情,李白的向往,不正體現(xiàn)在這富有詩(shī)意的神馳目注之中嗎?詩(shī)人的心潮起伏,不正像那浩浩東去的一江春水嗎?
二、初讀,解讀“早行”,感受意象的豐富1.尋讀意象課件出示:詩(shī)人圍繞“早行”一詞,寫(xiě)了哪些典型特征的細(xì)節(jié)、景物?如何體現(xiàn)“早行”?學(xué)生自由誦讀、思考交流。教師點(diǎn)撥:頷聯(lián)十種景物的十個(gè)名詞——雞、聲、茅、店、月、人、跡、板、橋、霜。一詞一景,讓我們獲得廣闊的想象空間,組成意韻豐富的畫(huà)面。這就是古典詩(shī)歌的“意象疊加”法。預(yù)設(shè):詩(shī)歌中處處體現(xiàn)“早行”,如“晨起動(dòng)征鐸”(清晨起床,車(chē)馬鈴聲叮叮當(dāng)當(dāng)),“雞聲茅店月”(雞鳴早看天),“人跡板橋霜”(莫道君行早,更有早行人),“枳花明驛墻”(“明”反襯“天暗”,說(shuō)明“早”)。2.延讀意象疊加的詩(shī)句課件出示:(1)枯藤老樹(shù)昏鴉,小橋流水人家,古道西風(fēng)瘦馬。(馬致遠(yuǎn)《天凈沙·秋思》)(2)樓船夜雪瓜洲渡,鐵馬秋風(fēng)大散關(guān)。(陸游《書(shū)憤》)(3)細(xì)草微風(fēng)岸,危檣獨(dú)夜舟。(杜甫《旅夜抒懷》)(4)桃李春風(fēng)一杯酒,江湖夜雨十年燈。(黃庭堅(jiān)《寄黃幾復(fù)》)
探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿(mǎn)足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說(shuō)說(shuō)你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿(mǎn)足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁(yè)隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)
三、課堂檢測(cè):(一)、判斷題(是一無(wú)二次方程的在括號(hào)內(nèi)劃“√”,不是一元二次方程的,在括號(hào)內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項(xiàng)是__________,一次項(xiàng)是__________,常數(shù)項(xiàng)是__________.2.如果方程ax2+5=(x+2)(x-1)是關(guān)于x的一元二次方程,則a__________.3.關(guān)于x的方程(m-4)x2+(m+4)x+2m+3=0,當(dāng)m__________時(shí),是一元二次方程,當(dāng)m__________時(shí),是一元一次方程。四、學(xué)習(xí)體會(huì):五、課后作業(yè)
解析:當(dāng)截面與軸截面平行時(shí),得到的截面的形狀為長(zhǎng)方形;當(dāng)截面與軸截面斜交時(shí),得到的截面的形狀是橢圓;當(dāng)截面與軸截面垂直時(shí),得到的截面的形狀是圓,所以截面的形狀不可能是三角形.故選A.方法總結(jié):用平面去截圓柱時(shí),常見(jiàn)的截面有圓、橢圓、長(zhǎng)方形、類(lèi)似于梯形、類(lèi)似于拱形等.探究點(diǎn)三:截圓錐問(wèn)題一豎直平面經(jīng)過(guò)圓錐的頂點(diǎn)截圓錐,所得到的截面形狀與下圖中相同的是()解析:經(jīng)過(guò)圓錐頂點(diǎn)的平面與圓錐的側(cè)面和底面截得的都是一條線.如圖,由圖可知得到的截面是一個(gè)等腰三角形.故選B.方法總結(jié):用平面去截圓錐,截面的形狀可能是三角形、圓、橢圓等.三、板書(shū)設(shè)計(jì)教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷操作、抽象、歸納、積累等思維過(guò)程,從中獲得數(shù)學(xué)知識(shí)與技能,發(fā)展空間觀念和動(dòng)手操作能力,同時(shí)升華學(xué)生的情感態(tài)度和價(jià)值觀.
[例3]、用一個(gè)平面去截一個(gè)幾何體,截面形狀有圓、三角形,那么這個(gè)幾何體可能是_________。四、鞏固強(qiáng)化:1、一個(gè)正方體的截面不可能是( )A、三角形 B、梯形 C、五邊形 D、七邊形2、用一個(gè)平面去截五棱柱,邊數(shù)最多的截面是_______形.3*、用一個(gè)平面去截幾何體,若截面是三角形,這個(gè)幾何體可能是__________________________________________________.4*、用一個(gè)平面截一個(gè)幾何體,如果截面是圓,你能想象出原來(lái)的幾何體可能是什么嗎?如虹截面是三角形呢?5*、如果用一個(gè)平面截一個(gè)正方體的一個(gè)角,剩下的幾何體有幾個(gè)頂點(diǎn)、幾條棱、幾個(gè)面?6*、幾何體中的圓臺(tái)、棱錐都是課外介紹的,所以我們就在這個(gè)欄目里繼續(xù)為大家介紹這兩種幾何體的截面.(1)圓臺(tái)用平面截圓臺(tái),截面形狀會(huì)有_____和_______這兩種較特殊圖形,截法如下:
(1)用簡(jiǎn)潔明快的語(yǔ)言概括大意,不能超過(guò)200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個(gè),且要分別涉及時(shí)間、路和速度這三個(gè)量.意圖:旨在檢測(cè)學(xué)生的識(shí)圖能力,可根據(jù)學(xué)生情況和上課情況適當(dāng)調(diào)整。說(shuō)明:練習(xí)注意了問(wèn)題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對(duì)同學(xué)的回答,教師給予點(diǎn)評(píng),對(duì)回答問(wèn)題暫時(shí)有困難的同學(xué),教師應(yīng)幫助他們樹(shù)立信心。第四環(huán)節(jié):課時(shí)小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運(yùn)用一次函數(shù)解決實(shí)際問(wèn)題時(shí),可以直接從函數(shù)圖象上獲取信息解決問(wèn)題,當(dāng)然也可以設(shè)法得出各自對(duì)應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過(guò)計(jì)算解決問(wèn)題。通過(guò)列出關(guān)系式解決問(wèn)題時(shí),一般首先判斷關(guān)系式的特征,如兩個(gè)變量之間是不是一次函數(shù)關(guān)系?當(dāng)確定是一次函數(shù)關(guān)系時(shí),可求出函數(shù)解析式,并運(yùn)用一次函數(shù)的圖象和性質(zhì)進(jìn)一步求得我們所需要的結(jié)果.
方法總結(jié):要認(rèn)真觀察圖象,結(jié)合題意,弄清各點(diǎn)所表示的意義.探究點(diǎn)二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過(guò)點(diǎn)(0,1)可得b=1,再將點(diǎn)(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達(dá)式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書(shū)設(shè)計(jì)一次函數(shù)的應(yīng)用單個(gè)一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過(guò)程由淺入深,并利用了豐富的實(shí)際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進(jìn),逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個(gè)體差異,使每個(gè)學(xué)生都學(xué)有所獲.
解:∵y=23x+a與y=-12x+b的圖象都過(guò)點(diǎn)A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個(gè)一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點(diǎn)B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點(diǎn)C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類(lèi)題要先求得頂點(diǎn)的坐標(biāo),即兩個(gè)一次函數(shù)的交點(diǎn)和它們分別與x軸、y軸交點(diǎn)的坐標(biāo).三、板書(shū)設(shè)計(jì)兩個(gè)一次函數(shù)的應(yīng)用實(shí)際生活中的問(wèn)題幾何問(wèn)題進(jìn)一步訓(xùn)練學(xué)生的識(shí)圖能力,能通過(guò)函數(shù)圖象獲取信息,解決簡(jiǎn)單的實(shí)際問(wèn)題,在函數(shù)圖象信息獲取過(guò)程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí),發(fā)展形象思維.在解決實(shí)際問(wèn)題的過(guò)程中,進(jìn)一步發(fā)展學(xué)生的分析問(wèn)題、解決問(wèn)題的能力和數(shù)學(xué)應(yīng)用意識(shí).
四個(gè)不同類(lèi)型的問(wèn)題由淺入深,學(xué)生能從不同角度掌握求一次函數(shù)的方法.對(duì)于問(wèn)題4,教師可引導(dǎo)學(xué)生分析,并教學(xué)生要學(xué)會(huì)畫(huà)圖,利用圖象分析問(wèn)題,體會(huì)數(shù)形結(jié)合方法的重要性.學(xué)生若出現(xiàn)解題格式不規(guī)范的情況,教師應(yīng)糾正并給予示范,訓(xùn)練學(xué)生規(guī)范答題的習(xí)慣.第五環(huán)節(jié)課時(shí)小結(jié)內(nèi)容:總結(jié)本課知識(shí)與方法1.本節(jié)課主要學(xué)習(xí)了怎樣確定一次函數(shù)的表達(dá)式,在確定一次函數(shù)的表達(dá)式時(shí)可以用待定系數(shù)法,即先設(shè)出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問(wèn)題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設(shè)函數(shù)表達(dá)式;(2)根據(jù)已知條件列出有關(guān)k,b的方程;(3)解方程,求k,b;4.把k,b代回表達(dá)式中,寫(xiě)出表達(dá)式.2.本節(jié)課用到的主要的數(shù)學(xué)思想方法:數(shù)形結(jié)合、方程的思想.目的:引導(dǎo)學(xué)生小結(jié)本課的知識(shí)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習(xí)題4.5:1,2,3,4目的:進(jìn)一步鞏固當(dāng)天所學(xué)知識(shí)。教師也可根據(jù)學(xué)生情況適當(dāng)增減,但難度不應(yīng)過(guò)大.
第一環(huán)節(jié):情境引入內(nèi)容:(一) 情境1實(shí)物投影,并呈現(xiàn)問(wèn)題:在一望無(wú)際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說(shuō):“累死我了”,小馬說(shuō):“你還累,這么大的個(gè),才比我多馱2個(gè).”老牛氣不過(guò)地說(shuō):“哼,我從你背上拿來(lái)一個(gè),我的包裹就是你的2倍!”,小馬天真而不信地說(shuō):“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識(shí)幫助小馬解決問(wèn)題呢?請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言).教師注意引導(dǎo)學(xué)生設(shè)兩個(gè)未知數(shù),從而得出二元一次方程.這個(gè)問(wèn)題由于涉及到老牛和小馬的馱包裹的兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程 ,若老牛從小馬背上拿來(lái)1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍, 得方程: .
目的:課后作業(yè)設(shè)計(jì)包括了兩個(gè)層面:作業(yè)1是為了鞏固基礎(chǔ)知識(shí)而設(shè)計(jì);作業(yè)2是為了擴(kuò)展學(xué)生的知識(shí)面;拓廣知識(shí),增加學(xué)生對(duì)數(shù)學(xué)問(wèn)題本質(zhì)的思考而設(shè)計(jì),通過(guò)此題可讓學(xué)生進(jìn)一步運(yùn)用三元一次方程組解決問(wèn)題.教學(xué)設(shè)計(jì)反思1.本節(jié)課的內(nèi)容屬于選修學(xué)習(xí)的內(nèi)容,主要突出對(duì)數(shù)學(xué)興趣濃厚、學(xué)有余力的同學(xué)進(jìn)一步探究和拓展使用,在數(shù)學(xué)方法和思想方面需重點(diǎn)引導(dǎo),通過(guò)引導(dǎo),使學(xué)生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導(dǎo),并且比較各種解題方法之間的優(yōu)劣,總結(jié)出解多元方程的基本方法.2.作為選修課,在內(nèi)容上要讓學(xué)生理解三元一次方程組概念的同時(shí),要讓學(xué)生理解為什么要用三元一次方程組甚至多元方程組去求解實(shí)際問(wèn)題的必要性,從而掌握本堂課的基礎(chǔ)知識(shí).在教學(xué)的過(guò)程中,要讓學(xué)生充分理解對(duì)復(fù)雜的實(shí)際問(wèn)題方程中元越多,等量關(guān)系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點(diǎn)和缺點(diǎn),有關(guān)這一方面的題目要讓學(xué)生充分討論、交流、合作,其理解才會(huì)深刻.
第三環(huán)節(jié):課堂小結(jié)活動(dòng)內(nèi)容:1. 通過(guò)前面幾個(gè)題,你對(duì)列方程組解決實(shí)際問(wèn)題的方法和步驟掌握的怎樣?2. 這里面應(yīng)該注意的是什么?關(guān)鍵是什么?3. 通過(guò)今天的學(xué)習(xí),你能不能解決求兩個(gè)量的問(wèn)題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實(shí)際問(wèn)題的主要步驟是什么?說(shuō)明:通過(guò)以上四個(gè)問(wèn)題,學(xué)生基本上掌握了列二元一次方程組解決實(shí)際問(wèn)題的方法和步驟,可啟發(fā)學(xué)生說(shuō)出自己的心得體會(huì)及疑問(wèn).活動(dòng)意圖:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識(shí)要點(diǎn)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.說(shuō)明:還可以建議有條件的學(xué)生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問(wèn)題,互相出題;同位的同學(xué)還可互相編題考察對(duì)方;還可以設(shè)置"我為老師出難題"活動(dòng),每人編一道題,給老師,老師再提出:"誰(shuí)來(lái)幫我解難題",以此激發(fā)學(xué)生的學(xué)習(xí)興趣和信心。
方法總結(jié):利用三角形三邊的數(shù)量關(guān)系來(lái)判定直角三角形,從而推出兩線的垂直關(guān)系.探究點(diǎn)二:勾股數(shù)下列幾組數(shù)中是勾股數(shù)的是________(填序號(hào)).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數(shù)的定義,不是勾股數(shù);第③④組不是正整數(shù),不是勾股數(shù);只有第②組的9,40,41是勾股數(shù).故填②.方法總結(jié):判斷勾股數(shù)的方法:必須滿(mǎn)足兩個(gè)條件:一要符合等式a2+b2=c2;二要都是正整數(shù).三、板書(shū)設(shè)計(jì)勾股定理的逆定理: 如果一個(gè)三角形的三邊長(zhǎng)a,b,c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形是直角三角形.勾股數(shù):滿(mǎn)足a2+b2=c2的三個(gè)正整數(shù),稱(chēng)為勾股數(shù).經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力、歸納能力.體驗(yàn)生活中數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類(lèi)生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣.
方程有兩個(gè)不相等的實(shí)數(shù)根.綜上所述,m=3.易錯(cuò)提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗(yàn)算,字母m的取值必須使判別式大于0,這一點(diǎn)很容易被忽略.三、板書(shū)設(shè)計(jì)一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應(yīng)用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應(yīng)用讓學(xué)生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達(dá)定理,感受不完全的歸納驗(yàn)證以及演繹證明.通過(guò)觀察、實(shí)踐、討論等活動(dòng),經(jīng)歷發(fā)現(xiàn)問(wèn)題、發(fā)現(xiàn)關(guān)系的過(guò)程,養(yǎng)成獨(dú)立思考的習(xí)慣,培養(yǎng)學(xué)生觀察、分析和綜合判斷的能力,激發(fā)學(xué)生發(fā)現(xiàn)規(guī)律的積極性,激勵(lì)學(xué)生勇于探索的精神.通過(guò)交流互動(dòng),逐步養(yǎng)成合作的意識(shí)及嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神.
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.三、板書(shū)設(shè)計(jì)用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學(xué)生合情合理的推理能力,并認(rèn)識(shí)到配方法是理解求根公式的基礎(chǔ).通過(guò)對(duì)求根公式的推導(dǎo),認(rèn)識(shí)到一元二次方程的求根公式適用于所有的一元二次方程,操作簡(jiǎn)單.體會(huì)數(shù)式通性,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性.提高學(xué)生的運(yùn)算能力,并養(yǎng)成良好的運(yùn)算習(xí)慣.
3、一般地,對(duì)于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R(shí)應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶(hù)居民一個(gè)月用電量不超過(guò)A千瓦時(shí),那么這戶(hù)居民這個(gè)月只交10元電費(fèi),如果超過(guò)A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過(guò)部分還要按每千瓦時(shí) 元收費(fèi).(1)若某戶(hù)2月份用電90千瓦時(shí),超過(guò)規(guī)定A千瓦時(shí),則超過(guò)部分電費(fèi)為多少元?(用A表示)(2)下表是這戶(hù)居民3月、4月的用電情況和交費(fèi)情況