一、本節(jié)內容在教材中所處的地位和作用:本單元是在學生理解了四則運算的意義和學會用字母表示數(shù)的基礎上進行學習的。由學習用字母表示數(shù)到學習方程,是學生又一次接觸初步的代數(shù)思想,這既是對所學四則運算意義和數(shù)量關系的進一步深化,又是為今后學習代數(shù)知識作準備,在知識銜接上具有重要作用。而這一節(jié)恰好在這一單元之中起著承上啟下的作用。二、 教學目標:1、在具體的活動中,體驗和理解等式的性質,會用等式的性質解簡單的方程。2、結合有關黔金絲猴的數(shù)量情況,對學生進行保護珍稀動物方面的教育。3、培養(yǎng)學生的觀察、討論、推理、合作交流能力。三、重點難點:重點:解簡單方程、用方程解決問題。因為方程知識與現(xiàn)實生活聯(lián)系比較緊密,同時是今后學習代數(shù)知識的基礎,所以把解簡單方程作為本節(jié)重點。
2. 教材分析這節(jié)課的教學是學生在掌握行程問題基本數(shù)量關系的基礎上進行的,本課教材給學生提供了“騎車”的情境,通過簡單的路線圖等方式呈現(xiàn)了速度路程等信息。然后要求學生根據(jù)這些信息去解決2個問題:①讓學生根據(jù)兩輛車的速度信息進行估計,在哪個地方相遇。②用方程解決相遇問題中求相遇時間的問題。3. 學情分析學生已經(jīng)在三年級接觸了簡單的行程問題,四年級上冊,學生就真正的開始學習速度、時間、路程之間的關系,并用三者的數(shù)量關系來解決行程問題。而本節(jié)課正是運用這些學生已有的知識基礎和生活經(jīng)驗進行相遇問題的探究。4、教學目標從知識與技能、過程與方法、情感態(tài)度價值觀的三維目標出發(fā),制定了以下的目標:①使學生理解相遇問題的意義及特點。②經(jīng)歷解決問題的過程,提高收集信息、處理信息和建立模型的能力。③會分析簡單實際問題中的數(shù)量關系,提高用方程解決簡單的實際問題的能力。
①闡發(fā)話題式:就是用簡練的語言對所給話題材料加以概括和濃縮,并找到一個最佳切入點加以深層次闡述。吉林一考生的滿分作文《漫談“感情”“認知”》的題記是:“同是對‘修墻’‘防盜’的預見,卻產(chǎn)生‘聰明’或‘被懷疑’的結果?!星椤鼓苋绱说刈笥抑J知’,心的小舟啊,在文化的河流中求索?!边@個題記通過對材料的簡單解釋,將“感情”與“認知”二者的關系詮釋得非常明白,也點明了作者的態(tài)度和議論的中心。②詮釋題目式:所擬題目一般都具有深刻性特點,運用題記形式對題目進行巧妙而又全面的詮釋。云南一考生的滿分作文《與你同行》的題記是:“他們一路同行,一個汲著水,一個負著火,形影相隨。在他們攜手共進時,就產(chǎn)生了智慧?!边@個題記形象而深刻地對“與你同行”這個題目進行了解釋,言簡意賅,表明了考生對感情和理智關系的認識。
交談時雙方的空間距離也有一定講究。和朋友談話、和陌生人談話、和異性談話、招呼長者和上級,都需要有一個合適的距離。如果上級故意“縮減”與下級人員通常談話時的距離,那是表示對下級的關切。說話的時候需要一面想,一面說,為了控制說話的主動權,免得被別人插人、打斷,人們可以使用“唔”“啊”之類的音節(jié),表示“話還沒有說完,你別著急”之類的意思??瞻滓脖硎疽馑迹谡f唱藝術中,什么時候停頓,停多久,都有講究,以便使交際更有成效。這就是說,空間和時間的因素也在交際中得到了適當?shù)倪\用。所以,各種伴隨動作也是交際的工具。它們一般都是在語言的基礎上產(chǎn)生的。即使像“察顏觀色”這一類特定的交際方式,也必須有語言的交際為基礎,預先有了一定的了解,對方才能領會??傊?,在上述的種種交際工具當中,身勢等伴隨動作是非語言的交際工具;旗語之類是建立在語言、文字基礎之上的輔助性交際工具;文字是建立在語言基礎之上的一種最重要的輔助交際工具;
一、說教材:本節(jié)課的內容是在前面學習了里程表(一)的基礎上進行教學的,是對兩個數(shù)量間關系的另一種解讀。前面我們學習了用線段圖表示各數(shù)量間的關系,本節(jié)課我們繼續(xù)學習在線段圖中兩數(shù)量間的關系。本節(jié)課的學習內容是通過結束里程數(shù)減去開始里程數(shù)得到汽車行駛里程數(shù),理解這種關系可以用測量來進行類比練習。讓學生明白其中道理。本節(jié)教材首先呈現(xiàn)一個出租車一周行駛里程表,引導學生先把表中的數(shù)據(jù)用線段中的點來表示,通過各點的關系來確定每天行駛的里程數(shù)。本節(jié)課在教學后的練習中,把這種方法拓展電表度數(shù)計算等,讓學生學會舉一反三的數(shù)學學習方法。二、說教學目標1、通過把里程表中的數(shù)據(jù)變成線段圖中的各點,理解數(shù)量間的關系。2,運用線段圖來解決生活中的實際問題。
這是相隔兩站的里程,相對問題1而言,難度有所增加。但數(shù)量關系不復雜,而此時學生已經(jīng)有了問題1扎實的畫圖基礎,所以我直接放手,讓學生選擇自己喜歡的方法畫圖,再算一算。3、會用圖,能選擇恰當?shù)姆椒ń鉀Q實際問題學習的最高境界是學以致用,畫一畫的目的是幫助自己解決問題,所以在學生初步掌握借助畫圖理解問題的基礎上,我及時向學生提問,你還想求哪段,鼓勵學生小組交流,并發(fā)現(xiàn)總結起點相同的里程問題的解決策略。在問題3時,我還是放手自主探究,因為有了前面的基礎,此時,聰明的學生已經(jīng)掌握了求兩站之間的里程的方法,而接受能力稍微慢一點的學生通過畫一畫明確算式中相減的兩個數(shù)量分別表示的哪一段路程,也能解答出來,這時再乘勝追擊,鼓勵學生說一個算式,讓其他學生求的是哪兩站之間的里程,這樣的設計既鞏固學習方法,又進行了開拓延展,可謂一舉兩得。本節(jié)課學生經(jīng)歷、感受著,借助畫圖分析問題、理解問題、解決問題的優(yōu)越性。讓學生在嘗試、探索中發(fā)展了思維,提高了能力。
二、探究交流,引導概括 —— 方程為了培養(yǎng)學生的發(fā)現(xiàn)和抽象概括能力,同時進一步理解方程的意義,我讓學生分組學習,引導他們先找出②20+χ=100,⑥ 3χ=180,⑧100+2χ=3×50像上面三臄?shù)仁降挠泄餐卣?,然后歸納概括什么叫做方程?最后得出:像這樣的含有未知數(shù)的等式,叫做方程。三、討論比較,辨析、概念 —— 等式與方程的關系為了體現(xiàn)學生的主體性,培養(yǎng)學生的合作意識,同時讓學生在解決問題的過程中得到創(chuàng)造的樂趣。通過四人合作用自己的方法創(chuàng)作 “ 方程 ” 與 “ 等式 ” 的關系圖,并用自己的話說一說 “ 等式 ” 與 “ 方程 ” 的關系:方程一定是等式,但等式不一定是方程。四、鞏固深化,拓展思維 —— 練習1 、“做一做”:2、判斷是否方程3、“方程一定是等式,等式也一定是方程”這句話對嗎?4、叫學生用圖來表示等式和方程的關系。
《數(shù)學課程標準》中指出:“學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者和合作者。只是在學生需要時給予恰當?shù)膸椭??!蓖ㄟ^不同形式的習題幫助學生掌握新知。進一步突出本節(jié)課的重難點。尤其是創(chuàng)新題,1、編兩個不同的方程,使方程的解都是ⅹ=6,2、在□中填入合適的數(shù),使等式成立。具有一定的挑戰(zhàn)性.只有當自己的觀點與集體不一致時,才會產(chǎn)生要證實自己思想的欲望,從而激活學生思維的火花.但是提出挑戰(zhàn)并不意味著要難倒學生,而是要激勵學生在學習的過程中不斷地去獲得成功的體驗.學生是學習的主體,只有通過學生自身的”再創(chuàng)造”活動,才能納入其認知結構中,才可能成為有效的知識. 在教與學的活動中,有老師的組織、參與和指導,有同伴的合作、交流與探索。 “授之以魚,不如授之以漁?!彪m只有一字只差,卻是兩種截然不同的教育理念。我選擇后者。這樣既培養(yǎng)了孩子們分析、推理能力和思維的靈活性,又為學生的新知建構拓展出更大的空間!
一、說教材:稍復雜的方程的教學任務例1教學解方程ax±b=c及其應用(列方程解形如ax±b=c的問題)(1)把解方程和用方程解決問題有機結合,在解決問題的過程中解較復雜的方程。(2)結合現(xiàn)實素材(足球上兩種顏色皮的塊數(shù))引出,這種問題用算術方法解決思考起來比較麻煩。(3解方程的過程其實是由解若干基本方程構成的(y-20=4,2x=24),需要強調把2x看成一個整體。(4)可以列出不同的方程,如2x-4=20,關鍵是使學生理解數(shù)量關系。二、說學生:學生在前面已經(jīng)學習了簡單的方程數(shù)量關系,及簡單方程式的解法,而且我在前面的教學中已經(jīng)笨鳥先飛,讓學生接觸了形如:ax±b=c的方程式。三、說教法:根據(jù)學生的實際情況,我準備在教學過程中,重點講解稍復雜方程式的數(shù)量關系式的分析研究,讓學生根據(jù)應用題的題意列出正確的數(shù)量關系式。
探索1:上節(jié)我們列出了與地毯的花邊寬度有關的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)
三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內劃“√”,不是一元二次方程的,在括號內劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數(shù)項是__________.2.如果方程ax2+5=(x+2)(x-1)是關于x的一元二次方程,則a__________.3.關于x的方程(m-4)x2+(m+4)x+2m+3=0,當m__________時,是一元二次方程,當m__________時,是一元一次方程。四、學習體會:五、課后作業(yè)
(1) 你是用什么方法解方程的?要求學生獨立完成。請一位同學在黑板上計算。學生交流:等式的兩邊同時加上同一個數(shù),等式仍然成立。也就是方程 x-9=15的兩邊同時加上9,抵消掉等式左邊的9,這樣等式的左邊只剩下x。(2) 你會檢驗方程的解是否正確嗎?指導學生把方程的解代入方程進行檢驗。2.出示:64頁第2題的第2小題。提問:你是根據(jù)哪個等量關系列出方程的?(1) 標準體重+超出標準的重量=胖胖的體重(2) 標準體重-低于標準的重量=小明的體重提問:他們標準體重的計算方法有什么不同?學生交流:一個是等式兩邊同時減去同一個數(shù),一個是等式兩邊同時加上同一個數(shù)。三、拓寬應用。1.解方程:x-5.3=10 75-x=402.65頁第4題提問:你是怎樣選出各方程的解的?把未知數(shù)的值代入方程,看看左右是否相等。3.65頁第5題提示學生認真讀題,注意選擇題中所給出的條件是否有用。
教學目標:1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結合函數(shù)圖象求方程的根.教學重點:二次函數(shù)與一元二次方程的聯(lián)系.預設難點:用二次函數(shù)與一元二次方程的關系綜合解題.☆ 預習導航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關系2.不解方程3x2-2x+4=0,此方程有 個根。二、導讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關系?
農(nóng)業(yè)科學的周期是以年為時間單位,一次實驗就要等到一次花開、結果。就這樣,幾個實驗誤導了袁隆平好幾年。這時登在《參考消息》上的一篇不起眼的文章像給迷途中的袁隆平以當頭一棒:克里克、沃森和威爾金斯發(fā)現(xiàn)DNA螺旋結構,西方的遺傳學研究進入分子水平?!拔耶敃r還在那里搞什么無性雜交,糟糕得很”。水稻是自花授粉植物,雄蕊雌蕊都在一朵花里面,雌雄同株,沒有雜種優(yōu)勢一雜種優(yōu)勢是生物界的普遍現(xiàn)象,小到細菌,大到人,近親繁殖的結果是種群的退化。但是水稻因為花小,其雜交是當時公認的世界難題,設在馬尼拉的世界水稻研究中心就是因為困難重重,差點關閉。袁隆平偏不信這個邪,他突發(fā)靈感:專門培養(yǎng)一種特殊的水稻品種——雄花退化的雄性不育系,沒有自己的花粉,這樣不就可以做到雜種優(yōu)勢了嗎?于是,漫長的尋找過程開始了,要找到這樣一株雄花退化而且雜交之后產(chǎn)量猛增的“太監(jiān)”水稻簡直是大海撈針。
二、分析題基于非典型肺炎防治的需要,武漢大學和中國科學院微生物研究所,集中優(yōu)秀人才和先進的儀器設備,以科學的理論為指導,運用現(xiàn)代的知識與技術手段,對SARS病毒進行深入細致的研究。2003年5月,他們聯(lián)合研制出抗擊SARS病毒侵入細胞的多肽藥物。經(jīng)科學試驗證明,它可以阻斷SARS病毒侵入人體細胞,具有預防和治療兩種功效。這些藥物的發(fā)明在非典型肺炎的預防和治療發(fā)揮著重要的作用。上述材料體現(xiàn)了辯證唯物主義認識論的哪些觀點?答案提示:體現(xiàn)了實踐是認識的來源、實踐是認識發(fā)展的動力、實踐是檢驗認識的真理性的唯一標準、實踐是認識的目的和歸宿、認識對實踐具有反作用等辯證唯物主義認識論的觀點。三、辨析題1、“仁者見仁,智者見智”的說法否定了真理的客觀性答案提示:(1)此觀點錯誤。(2)“仁者見仁,智者見智”是說對同一事物不同的人有不同的見解。
圖11-3 “西氣東輸線路示意圖”圖中可見西氣東輸工程主要穿越的地形區(qū)有塔里木盆地、河西走廊、寧夏平原、華北平原、長江中下游平原,連接了我國西部、中部和東部三個經(jīng)濟地帶,自然景觀上由東向西呈現(xiàn)出從沿海向內陸的地域分異?!窘虒W內容】一、 打造中國能源輸送的大動脈1、 西氣東輸工程概況(1)三大組成部分——天然氣開發(fā)建設、主干管道建設、東部用戶管網(wǎng)建設(2)主干道走向——西起新疆塔里木盆地的輪南油氣田,向東經(jīng)過庫爾勒、吐魯番、哈密、柳園、張掖、武威、干塘、中寧、靖邊、柳林、鄭州、尉氏、淮南、南京、常州,最終到達上海,全長近4200千米。[經(jīng)典例題1]讀“我國西氣東輸主干道走向示意圖”(圖11-5),回答:(1)天然氣按形成和來源分屬于來自 的能源,與煤炭相比具有的優(yōu)點是
1、圖5.3“長江中游防洪形勢圖”(1)讀圖后,說出長江中游的主要水文特征:多曲流、多支流、多湖泊。(2)分析“千里長江,險在荊江”的原因及其解決的措施:荊江河段特別彎曲,有“九曲回腸”之稱,水流不暢,泥沙大量淤積,使河床高出兩岸平地,形成“懸河”。一旦發(fā)生洪水,堤防漫潰直接威脅江漢平原和洞庭湖區(qū)的農(nóng)田、企業(yè)、城市、交通要道和人民生命財產(chǎn)安全。新中國成立后,治理荊江的措施主要有:修建荊江分洪工程,完成了幾處裁彎取直工程,加固了荊江大堤。(3)在圖上找出主要分洪區(qū)。2、圖5.5“長江三峽圖”(1)掌握長江三峽的組成、名稱及其在圖上的位置:說明:①長江三峽的長度數(shù)據(jù)有多種,如192千米、193千米、204千米208千米等。②有的著作中把大寧河寬谷劃入瞿塘峽,把香溪寬谷劃入西陵峽。
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學生已經(jīng)學過一元二次方程與二次函數(shù)的關系,本節(jié)課的內容就是在此基礎上的推廣。從而建立一般的函數(shù)的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1、了解函數(shù)(結合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關系,掌握零點存在性定理的運用;3、在認識函數(shù)零點的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數(shù)學數(shù)形結合及函數(shù)思想; a.數(shù)學抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學建模:運用函數(shù)的觀點方程的根;
本章通過學習用二分法求方程近似解的的方法,使學生體會函數(shù)與方程之間的關系,通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。1.了解函數(shù)的零點、方程的根與圖象交點三者之間的聯(lián)系.2.會借助零點存在性定理判斷函數(shù)的零點所在的大致區(qū)間.3.能借助函數(shù)單調性及圖象判斷零點個數(shù).數(shù)學學科素養(yǎng)1.數(shù)學抽象:函數(shù)零點的概念;2.邏輯推理:借助圖像判斷零點個數(shù);3.數(shù)學運算:求函數(shù)零點或零點所在區(qū)間;4.數(shù)學建模:通過由抽象到具體,由具體到一般的思想總結函數(shù)零點概念.重點:零點的概念,及零點與方程根的聯(lián)系;難點:零點的概念的形成.
本節(jié)通過學習用二分法求方程近似解的的方法,使學生體會函數(shù)與方程之間的關系,通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.了解二分法的原理及其適用條件.2.掌握二分法的實施步驟.3.通過用二分法求方程的近似解,使學生體會函數(shù)零點與方程根之間的聯(lián)系,初步形成用函數(shù)觀點處理問題的意識.數(shù)學學科素養(yǎng)1.數(shù)學抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點近似值的步驟;3.數(shù)學運算:求函數(shù)零點近似值;4.數(shù)學建模:通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。