課程名稱數(shù)學(xué)課題名稱8.2 直線的方程課時(shí)2授課日期2016.3任課教師劉娜目標(biāo)群體14級(jí)五高班教學(xué)環(huán)境教室學(xué)習(xí)目標(biāo)知識(shí)目標(biāo): (1)理解直線的傾角、斜率的概念; (2)掌握直線的傾角、斜率的計(jì)算方法. 職業(yè)通用能力目標(biāo): 正確分析問(wèn)題的能力 制造業(yè)通用能力目標(biāo): 正確分析問(wèn)題的能力學(xué)習(xí)重點(diǎn)直線的斜率公式的應(yīng)用.學(xué)習(xí)難點(diǎn)直線的斜率概念和公式的理解.教法、學(xué)法講授、分析、討論、引導(dǎo)、提問(wèn)教學(xué)媒體黑板、粉筆
課題序號(hào) 授課班級(jí) 授課課時(shí)2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質(zhì)使用教具多媒體課件教學(xué)目的1.了解平面的定義、表示法及特點(diǎn),會(huì)用符號(hào)表示點(diǎn)、線、面之間的關(guān)系—基礎(chǔ)模塊 2.了解平面的基本性質(zhì)和推論,會(huì)應(yīng)用定理和推論解釋生活中的一些現(xiàn)象—基礎(chǔ)模塊 3.會(huì)用斜二測(cè)畫(huà)法畫(huà)立體圖形的直觀圖—基礎(chǔ)模塊 4.培養(yǎng)學(xué)生的空間想象能力教學(xué)重點(diǎn)用適當(dāng)?shù)姆?hào)表示點(diǎn)、線、面之間的關(guān)系;會(huì)用斜二測(cè)畫(huà)法畫(huà)立體圖形的直觀圖教學(xué)難點(diǎn)從平面幾何向立體幾何的過(guò)渡,培養(yǎng)學(xué)生的空間想象能力.更新補(bǔ)充 刪節(jié)內(nèi)容 課外作業(yè) 教學(xué)后記能動(dòng)手畫(huà),動(dòng)腦想,但立體幾何的語(yǔ)言及想象能力差
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過(guò)線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過(guò)點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問(wèn)題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問(wèn)題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說(shuō)明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無(wú)關(guān),也就是說(shuō)公式也可寫(xiě)成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問(wèn)題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過(guò)一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開(kāi)可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見(jiàn),任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來(lái)探討這一方面的問(wèn)題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過(guò)恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無(wú)解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過(guò)C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為_(kāi)_______.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
切線方程的求法1.求過(guò)圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過(guò)圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過(guò)數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.
解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1和X2,根據(jù)市場(chǎng)分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個(gè)項(xiàng)目上各投資100萬(wàn)元, Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤(rùn),求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對(duì)于投資者有什么建議? 解:(1)題目可知,投資項(xiàng)目A和B所獲得的利潤(rùn)Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說(shuō)明投資A項(xiàng)目比投資B項(xiàng)目期望收益要高;同時(shí) ,說(shuō)明投資A項(xiàng)目比投資B項(xiàng)目的實(shí)際收益相對(duì)于期望收益的平均波動(dòng)要更大.因此,對(duì)于追求穩(wěn)定的投資者,投資B項(xiàng)目更合適;而對(duì)于更看重利潤(rùn)并且愿意為了高利潤(rùn)承擔(dān)風(fēng)險(xiǎn)的投資者,投資A項(xiàng)目更合適.
對(duì)于離散型隨機(jī)變量,可以由它的概率分布列確定與該隨機(jī)變量相關(guān)事件的概率。但在實(shí)際問(wèn)題中,有時(shí)我們更感興趣的是隨機(jī)變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測(cè)驗(yàn)中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績(jī)是否“兩極分化”則需要考察這個(gè)班數(shù)學(xué)成績(jī)的方差。我們還常常希望直接通過(guò)數(shù)字來(lái)反映隨機(jī)變量的某個(gè)方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運(yùn)動(dòng)員射中目標(biāo)靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當(dāng)n足夠大時(shí),頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個(gè)平均值的大小可以反映甲運(yùn)動(dòng)員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過(guò)點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
2.過(guò)程與方法 通過(guò)研究三角形、四邊形的內(nèi)角和,讓學(xué)生經(jīng)歷觀察、思考、推理、歸納的過(guò)程,滲透猜想--驗(yàn)證--結(jié)論--運(yùn)用的學(xué)習(xí)方法,培養(yǎng)學(xué)生動(dòng)手操作和合作交流的能力,增強(qiáng)學(xué)生的主體探究意識(shí)。3.情感態(tài)度與價(jià)值觀 培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的興趣,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的快樂(lè)。【教學(xué)重點(diǎn)】 引導(dǎo)學(xué)生發(fā)現(xiàn)三角形內(nèi)角和是180°,并能應(yīng)用這一知識(shí)解決一些簡(jiǎn)單問(wèn)題;通過(guò)量、拼、算等探究活動(dòng),使學(xué)生了解任意四邊形的內(nèi)角和都是3600 ?!窘虒W(xué)難點(diǎn)】 用不同方法驗(yàn)證三角形的內(nèi)角和是180°;引導(dǎo)學(xué)生利用轉(zhuǎn)化的方法把四邊形或多邊形轉(zhuǎn)化成三角形,發(fā)現(xiàn)多邊形的邊數(shù)與內(nèi)角和之間的關(guān)系?!窘虒W(xué)方法】啟發(fā)式教學(xué)、自主探索、合作交流、討論法、講解法。【課前準(zhǔn)備】多媒體、不同類型的三角形各一個(gè)、量角器。
2.過(guò)程與方法 通過(guò)實(shí)踐操作、猜想驗(yàn)證、合作探究,經(jīng)歷發(fā)現(xiàn)“三角形任意兩邊的和大于第三邊”這一性質(zhì)的活動(dòng)過(guò)程,發(fā)展空間觀念,培養(yǎng)邏輯思維能力,體驗(yàn)“做數(shù)學(xué)”的成功。3.情感態(tài)度與價(jià)值觀 (1)發(fā)現(xiàn)生活中的數(shù)學(xué)美,會(huì)從美觀和實(shí)用的角度解決生活中的數(shù)學(xué)問(wèn)題。 (2)學(xué)會(huì)從全面、周到的角度考慮問(wèn)題。 【教學(xué)重點(diǎn)】 理解、掌握“三角形任意兩邊之和大于第三邊”的性質(zhì);理解兩點(diǎn)間的距離的含義。【教學(xué)難點(diǎn)】 引導(dǎo)探索三角形的邊的關(guān)系,并發(fā)現(xiàn)“三角形任意兩邊的和大于第三邊”的性質(zhì)?!窘虒W(xué)方法】啟發(fā)式教學(xué)、自主探索、合作交流、討論法、講解法?!菊n前準(zhǔn)備】多媒體、學(xué)具袋【課時(shí)安排】 1課時(shí)【教學(xué)過(guò)程】(一)復(fù)習(xí)導(dǎo)入 師:什么樣的圖形叫三角形?生交流:由3條線段圍成的圖形(每相鄰兩條線段的端點(diǎn)相連)叫做三角形。
(二)探究新知 1. 探究圓錐的體積的計(jì)算方法,學(xué)習(xí)例2。師:圓錐的體積和圓柱的體積有沒(méi)有關(guān)系呢?圓柱的底面是圓,圓錐的底面也是圓……通過(guò)實(shí)驗(yàn)探究一下圓錐和圓柱體積之間的關(guān)系。小組合作探索:(1)各組準(zhǔn)備好等底、等高的圓柱、圓錐形容器。(2)用倒沙子或水的方法試一試。(3)圓錐的體積與同它等底等 高的圓柱體積之間有什么關(guān)系?(4)小組活動(dòng),師巡視指導(dǎo)。2.推導(dǎo)圓錐體積的計(jì)算方法。 (1)課件演示等底等高的圓柱和圓錐
(一)觀圖激趣、設(shè)疑導(dǎo)入 師:上一節(jié)我們已經(jīng)認(rèn)識(shí)了比例,知道兩個(gè)比怎樣才能組成比例,下面請(qǐng)同學(xué)們判斷一下下面各組的比能否組成比例。(1)0.4∶和1.2∶2 (2)和生1:根據(jù)比例的意義,第(1)題,這兩個(gè)比的比值相等,都是0.6,所以(1)題的兩個(gè)比能組成比例。生2:我來(lái)回答第(2)題,我也利用比例的意義,求出=5,=6,這兩個(gè)比的比值不相等,所以第(2)題的兩個(gè)比不能組成比例。師:這兩名同學(xué)回答的真好,有理有據(jù),讓我們?yōu)樗麄兊谋憩F(xiàn)鼓掌!師:今天這節(jié)課,我們將共同來(lái)學(xué)習(xí)用另一種方法來(lái)判斷兩個(gè)比能否組成比例,同學(xué)們想知道是什么方法嗎?生:想知道。師:那就是比例的基本性質(zhì)(板書(shū)課題:比例的基本性質(zhì))?!驹O(shè)計(jì)意圖】復(fù)習(xí)學(xué)生已有的知識(shí),喚醒學(xué)生已有學(xué)習(xí)經(jīng)驗(yàn),教師的提問(wèn)吸引了學(xué)生的注意力,也引發(fā)學(xué)生的好奇心,為學(xué)習(xí)新知識(shí)開(kāi)了一個(gè)好頭。
(一)復(fù)習(xí)導(dǎo)入 師:什么是體積?生:物體所占空間的大小是物體的體積。師:怎樣求長(zhǎng)方體和正方體的體積?生:長(zhǎng)方體的體積=底面積×高 正方體的體積=底面積×高師:圓的面積計(jì)算公式是怎樣推導(dǎo)出來(lái)的?課件出示:生:把圓轉(zhuǎn)化成長(zhǎng)方形,長(zhǎng)方形的長(zhǎng)等于圓柱底面周長(zhǎng)的一半,寬等于半徑,所以圓的面積:S = πr2猜測(cè):把圓柱轉(zhuǎn)化成什么立體圖形來(lái)推導(dǎo)圓柱的體積公式呢?呢?今天我們一起來(lái)探討這個(gè)問(wèn)題。板書(shū)課題:圓柱的體積。
(一)復(fù)習(xí)舊知,導(dǎo)入新課。師:同學(xué)們,上節(jié)課我們認(rèn)識(shí)了體積和體積單位,請(qǐng)你填一填這兩道題,看看你學(xué)得怎么樣。(課件第2張)1.常用的體積單位有(立方厘米)、(立方分米)、(立方米),可以分別寫(xiě)成(cm³) 、(dm³)、 (m³)。2.棱長(zhǎng)是1cm的正方體,體積是(1cm³)。3.棱長(zhǎng)是1dm的正方體,體積是(1dm³)。4.棱長(zhǎng)是1m的正方體,體積是(1m³)?!驹O(shè)計(jì)意圖】1dm³是多少cm³呢?這節(jié)課我們就來(lái)研究一下體積單位間的進(jìn)率。(板書(shū)課題)(二)探究新知1.探究立方分米和立方厘米間的進(jìn)率:(課件第3張)(1)下圖是一個(gè)棱長(zhǎng)為1dm的正方體,體積是1dm³。想一想,它的體積是多少立方厘米呢?(2)小組討論,你是怎樣想的?(3)匯報(bào)交流:(課件第4張)生1:如果把它的棱長(zhǎng)看作是10cm,可以把它切成1000塊1cm³的小正方體。10×10×10=1000.生2:它的底面積是1dm²,就是100cm²,100×10=1000,一共是1000cm³。1dm³=1000cm³【設(shè)計(jì)意圖】用小組討論的方式,讓學(xué)生從討論的過(guò)程中找到解決問(wèn)題的方法,培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力、思維能力。2.你知道1m³等于多少立方分米嗎?(課件第5張)生1:把棱長(zhǎng)是1m的正方體,看作棱長(zhǎng)是10dm的正方體,10×10×10=1000dm³。1m³=1000dm³。 生2:棱長(zhǎng)是1m的正方體,底面積是1m²,就是100dm²,100×10=1000dm³,一共是1000dm³。生3:1m³=1000dm³ 3.整理計(jì)量單位之間的進(jìn)率。(1)小組討論:到現(xiàn)在為止,我們已經(jīng)學(xué)習(xí)了哪些計(jì)量單位?請(qǐng)整理在表中。