第一節(jié)通過研究集合中元素的特點(diǎn)研究了元素與集合之間的關(guān)系及集合的表示方法,而本節(jié)重點(diǎn)通過研究元素得到兩個集合之間的關(guān)系,尤其學(xué)生學(xué)完兩個集合之間的關(guān)系后,一定讓學(xué)生明確元素與集合、集合與集合之間的區(qū)別。課程目標(biāo)1. 了解集合之間包含與相等的含義,能識別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達(dá)集合間的關(guān)系,體會直觀圖示對理解抽象概念的作用。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學(xué)運(yùn)算:由集合間的關(guān)系求參數(shù)的范圍,常見包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過集合關(guān)系列不等式組, 此過程中重點(diǎn)關(guān)注端點(diǎn)是否含“=”及 問題;5.數(shù)學(xué)建模:用集合思想對實(shí)際生活中的對象進(jìn)行判斷與歸類。
它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進(jìn)行求值、化簡、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運(yùn)算能力,但在數(shù)學(xué)的應(yīng)用意識與應(yīng)用能力方面尚需進(jìn)一步培養(yǎng).課程目標(biāo)1.能用二倍角公式推導(dǎo)出半角公式,體會三角恒等變換的基本思想方法,以及進(jìn)行簡單的應(yīng)用. 2.了解三角恒等變換的特點(diǎn)、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進(jìn)行三角函數(shù)式的化簡、求值以及證明,進(jìn)而進(jìn)行簡單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學(xué)運(yùn)算:三角函數(shù)式的求值.
新知講授(一)——古典概型 對隨機(jī)事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個特征的試驗(yàn)稱為古典概型試驗(yàn),其數(shù)學(xué)模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點(diǎn)只有有限個;2、等可能性:每個樣本點(diǎn)發(fā)生的可能性相等。思考一:下面的隨機(jī)試驗(yàn)是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機(jī)選擇一名學(xué)生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學(xué)生,從中選擇一名學(xué)生,即樣本點(diǎn)是有限個;因?yàn)槭请S機(jī)選取的,所以選到每個學(xué)生的可能性都相等,因此這是一個古典概型。
(4)“不論m取何實(shí)數(shù),方程x2+2x-m=0都有實(shí)數(shù)根”是全稱量詞命題,其否定為“存在實(shí)數(shù)m0,使得方程x2+2x-m0=0沒有實(shí)數(shù)根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應(yīng)結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結(jié)論.(2)對于省略量詞的命題,應(yīng)先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓(xùn)練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實(shí)數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.
《數(shù)學(xué)1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學(xué)生根據(jù)具體的函數(shù)圖象能夠借助計(jì)算機(jī)或信息技術(shù)工具計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數(shù)與方程之間的聯(lián)系;它既是本冊書中的重點(diǎn)內(nèi)容,又是對函數(shù)知識的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應(yīng)用,同時又為高中數(shù)學(xué)中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.通過具體實(shí)例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計(jì)算器用二分法求方程的近似解.3.會用二分法求一個函數(shù)在給定區(qū)間內(nèi)的零點(diǎn),從而求得方程的近似解. a.數(shù)學(xué)抽象:二分法的概念;b.邏輯推理:運(yùn)用二分法求近似解的原理;
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點(diǎn)B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內(nèi)不經(jīng)過交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實(shí)形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側(cè)畫法觀察:矩形窗戶在陽光照射下留在地面上的影子是什么形狀?眺望遠(yuǎn)處成塊的農(nóng)田,矩形的農(nóng)田在我們眼里又是什么形狀呢?3. 給出斜二測具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時,把他們畫成對應(yīng)的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長度不變,平行于Y軸的線段,在直觀圖中長度為原來一半。4.對斜二測方法進(jìn)行舉例:對于平面多邊形,我們常用斜二測畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點(diǎn)N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測畫法(1)建兩個坐標(biāo)系,注意斜坐標(biāo)系夾角為45°或135°;(2)與坐標(biāo)軸平行或重合的線段保持平行或重合;(3)水平線段等長,豎直線段減半;(4)整理.簡言之:“橫不變,豎減半,平行、重合不改變。”
1.探究:根據(jù)基本事實(shí)的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個平面,由此可以想到,如果一個平面內(nèi)有兩條相交或平行直線都與另一個平面平行,是否就能使這兩個平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個平面內(nèi)有兩條平行直線與另一個平面平行,這兩個平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內(nèi)畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個平面內(nèi)有兩條相交直線與另一個平面平行,這兩個平面是平行的,如圖,平面ABCD內(nèi)兩條相交直線A’C’,B’D’平行。
新知探究:向量的減法運(yùn)算定義問題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進(jìn)行:減去一個向量相當(dāng)于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運(yùn)算? 問題八:非零共線向量怎樣做減法運(yùn)算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點(diǎn)B的直線。而不過點(diǎn)B的直線在地面內(nèi)總是能找到過點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.
二、說準(zhǔn)備:為了更好的進(jìn)行教學(xué),我為本次教學(xué)活動準(zhǔn)備了,掛圖,鈴鐺,幼兒操作材料等。三、說教法學(xué)法:這一節(jié)課的教學(xué)對象是小班幼兒。他們年齡小、好動、愛玩、好奇心強(qiáng),注意力容易分散。根據(jù)這一特點(diǎn),為了抓住他們的興趣,激發(fā)他們的好奇心,我采用了愉快式教學(xué)方法為主,創(chuàng)設(shè)情境,設(shè)計(jì)了以游戲的形式,讓幼兒在游戲中學(xué)習(xí),充分發(fā)揮幼兒的學(xué)習(xí)積極性。為了更好地突出幼兒的主體地位,在整個教學(xué)過程中,通過讓幼兒聽一聽,數(shù)一數(shù)、說一說、做一做等多種形式,讓幼兒積極動眼、動耳、動腦、動口,引導(dǎo)幼兒通過自己的學(xué)習(xí)體驗(yàn)來學(xué)習(xí)新知,積極開展本節(jié)課的教學(xué)活動。四、說程序設(shè)計(jì):課堂教學(xué)是幼兒數(shù)學(xué)知識的獲得、技能技巧的形成、智力、能力的發(fā)展以及思想品德的養(yǎng)成的主要途徑。為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對整個教學(xué)過程進(jìn)行了系統(tǒng)地規(guī)劃,遵循目標(biāo)性、整體性、啟發(fā)性、主體性等一系列原則進(jìn)行教學(xué)設(shè)計(jì)。設(shè)計(jì)了四個主要的教學(xué)程序:
說課內(nèi)容:我說課的內(nèi)容是人教版小學(xué)數(shù)學(xué)一年級上冊第五單元、第三課時、6、7的加減法應(yīng)用。我將從教材分析,教學(xué)目標(biāo)分析,教學(xué)重難點(diǎn)及突破方法,教學(xué)流程設(shè)計(jì),4個方面來進(jìn)行說課。一、說教材:1、內(nèi)容:本節(jié)課是在學(xué)生學(xué)習(xí)6、7加減法的基礎(chǔ)上展開教學(xué)的,教材第一次出現(xiàn)用情景圖呈現(xiàn)數(shù)學(xué)問題的形式,呈現(xiàn)了一個簡單求和求差的數(shù)學(xué)問題,使學(xué)生明確、知道兩個相關(guān)的信息和一個相關(guān)的問題,就構(gòu)成了一個簡單的數(shù)學(xué)問題。2、地位:從整個知識網(wǎng)絡(luò)來看,它也標(biāo)志著數(shù)學(xué)應(yīng)用題數(shù)學(xué)的開始,是向后面的文字應(yīng)用題過度的橋梁。二、說教學(xué)目標(biāo)通過對教材的分析,確立了如下教學(xué)目標(biāo):1.通過學(xué)習(xí)使學(xué)生認(rèn)識理解大括號和問號的意義,能借助圖畫正確分析題意。2.會用6和7的加減法解決生活中簡單問題,使學(xué)生切實(shí)感受到用學(xué)過的數(shù)學(xué)知識去解決簡單的實(shí)際問題的過程。3.初步感受數(shù)學(xué)與日常生活的密切聯(lián)系,體驗(yàn)學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。
一、 教材分析“三角形的特性”是人教版小學(xué)數(shù)學(xué)四年級下冊第五章第一節(jié)的內(nèi)容,本節(jié)課主要闡述了三個方面,一是三角形的定義,二是三角形高和底的定義 。是學(xué)生在學(xué)習(xí)了線段、角基礎(chǔ)上進(jìn)行教學(xué)的,為進(jìn)一步學(xué)習(xí)三角形的分類和內(nèi)角和打下堅(jiān)定的基礎(chǔ)。二、 學(xué)情分析對于學(xué)情的合理把握是上好一堂課的基礎(chǔ)。本節(jié)課的授課對象為四年級的學(xué)生,他們的觀察、記憶、想象能力在迅速的發(fā)展,有強(qiáng)烈的好奇心。所以在教學(xué)過程中應(yīng)該更多的激發(fā)他們的學(xué)習(xí)興趣和情感動力,引導(dǎo)他們多觀察,多想象。 三、 教學(xué)目標(biāo)根據(jù)新課程標(biāo)準(zhǔn)、教材特點(diǎn)、學(xué)生實(shí)際,我確定了如下教學(xué)目標(biāo):(1)知識與技能目標(biāo):讓學(xué)生初步理解并掌握三角形的特性及三角形高和底的含義,能準(zhǔn)確作出三角形的高 。(2)過程與方法目標(biāo):經(jīng)歷猜測、觀察、操作等教學(xué)活動,培養(yǎng)學(xué)生相互轉(zhuǎn)化、滲透、遷移的數(shù)學(xué)思想方法。(3)情感態(tài)度與價值觀目標(biāo):讓學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動,對數(shù)學(xué)有好奇心和求知欲。
教學(xué)目標(biāo):1、知識與技能:通過復(fù)習(xí),使學(xué)生進(jìn)一步理解乘法運(yùn)算的意義。通過知識的系統(tǒng)復(fù)習(xí),溝通乘法口訣與乘法算式、加法算式及倍數(shù)之間的聯(lián)系,能正確、合理、靈活的解決問題。2、過程和方法:在經(jīng)歷整理和復(fù)習(xí)的過程中,培養(yǎng)學(xué)生的數(shù)學(xué)能力。注重培養(yǎng)學(xué)生從不同角度觀察、思考問題的習(xí)慣,體會解決問題策略多樣化的教學(xué)思想。3、情感、態(tài)度與價值觀:通過創(chuàng)設(shè)連貫性的故事情境,使學(xué)生積極主動的投入到學(xué)習(xí)中來,從而體驗(yàn)到學(xué)習(xí)數(shù)學(xué)的樂趣。培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情以及積極思考與同學(xué)合作學(xué)習(xí)的習(xí)慣。教學(xué)重點(diǎn):進(jìn)一步理解乘法運(yùn)算的意義,乘法口訣與乘法算式、加法算式及倍數(shù)之間的聯(lián)系教學(xué)難點(diǎn):建構(gòu)乘法口訣與乘法算式、加法算式及倍數(shù)之間的聯(lián)系
2. 教材分析這節(jié)課的教學(xué)是學(xué)生在掌握行程問題基本數(shù)量關(guān)系的基礎(chǔ)上進(jìn)行的,本課教材給學(xué)生提供了“騎車”的情境,通過簡單的路線圖等方式呈現(xiàn)了速度路程等信息。然后要求學(xué)生根據(jù)這些信息去解決2個問題:①讓學(xué)生根據(jù)兩輛車的速度信息進(jìn)行估計(jì),在哪個地方相遇。②用方程解決相遇問題中求相遇時間的問題。3. 學(xué)情分析學(xué)生已經(jīng)在三年級接觸了簡單的行程問題,四年級上冊,學(xué)生就真正的開始學(xué)習(xí)速度、時間、路程之間的關(guān)系,并用三者的數(shù)量關(guān)系來解決行程問題。而本節(jié)課正是運(yùn)用這些學(xué)生已有的知識基礎(chǔ)和生活經(jīng)驗(yàn)進(jìn)行相遇問題的探究。4、教學(xué)目標(biāo)從知識與技能、過程與方法、情感態(tài)度價值觀的三維目標(biāo)出發(fā),制定了以下的目標(biāo):①使學(xué)生理解相遇問題的意義及特點(diǎn)。②經(jīng)歷解決問題的過程,提高收集信息、處理信息和建立模型的能力。③會分析簡單實(shí)際問題中的數(shù)量關(guān)系,提高用方程解決簡單的實(shí)際問題的能力。
一、說教材:6的乘法口訣是人教版九年制義務(wù)教育小學(xué)數(shù)學(xué)第三冊第三單元第六課時的內(nèi)容。是在學(xué)生已經(jīng)初步理解了乘法的意義,學(xué)會了1——5的乘法口訣的基礎(chǔ)上進(jìn)行教學(xué)的。教材在編排上先出現(xiàn)一組準(zhǔn)備題,每次加6,把得數(shù)填在空格里;再出現(xiàn)例10,看圖寫出乘法算式,并編寫出乘法口訣;然后進(jìn)行鞏固練習(xí)、并運(yùn)用所學(xué)知識解決實(shí)際問題。乘法口訣的教學(xué)是本單元教學(xué)的一個重點(diǎn),也是本學(xué)期教學(xué)的一個重點(diǎn),它是學(xué)生以后進(jìn)一步學(xué)習(xí)乘除法的基礎(chǔ)。根據(jù)教學(xué)內(nèi)容、學(xué)生實(shí)際和新課程標(biāo)準(zhǔn)的要求,我從知識與技能,過程與方法,情感態(tài)度與價值觀等幾方面制定了本課的教學(xué)目標(biāo):教學(xué)目標(biāo):1、知識目標(biāo):學(xué)生通過操作軟件,在學(xué)習(xí)乘法口訣的過程中進(jìn)一步理解意義,讓學(xué)生在實(shí)際問題情景中感受乘法口訣的形成過程,并能用口訣熟練地進(jìn)行計(jì)算。
(一)教學(xué)內(nèi)容我說課的內(nèi)容是人教版小學(xué)數(shù)學(xué)四年級第三單元第一小節(jié)“加法運(yùn)算定律”中的第1課時的內(nèi)容,其內(nèi)容包括:第17頁的例1以及18頁的“做一做”第一題、第19頁練習(xí)五第1~3題的部分習(xí)題。(二)教材地位數(shù)學(xué)中,研究數(shù)的運(yùn)算,再給出運(yùn)算的定義之后,最主要的基礎(chǔ)工作就是研究該運(yùn)算的性質(zhì)。在運(yùn)算的各種性質(zhì)中,最基本的幾條性質(zhì),通常稱為“運(yùn)算定律”。加法是數(shù)學(xué)中最基本的運(yùn)算之一。通過本課時的學(xué)習(xí),首先,可使學(xué)生對加法的認(rèn)識從感性上升到理性。其次,用不完全歸納法概括出加法交換律的文字表述形式和字母形式,一方面提高知識的抽象概括程度,另一方面為以后正式講用字母表示數(shù)打下初步基礎(chǔ)。(三)教學(xué)目標(biāo)1、通過學(xué)習(xí),使學(xué)生理解和掌握加法交換律,并會運(yùn)用加法交換律進(jìn)行簡便計(jì)算。2、讓學(xué)生學(xué)會用符號或字母來表示加法交換律。3、培養(yǎng)學(xué)生抽象概括能力,引導(dǎo)學(xué)生由感性認(rèn)識上升到一定的理性認(rèn)識。
尊敬的各位評委老師: 你們好!我說課的內(nèi)容是義務(wù)教育教科書人教版小學(xué)數(shù)學(xué)四年級下冊第一單元第5-6頁的內(nèi)容《乘除法的意義和各部分間的關(guān)系》。下面我談?wù)劚竟?jié)課的教學(xué)設(shè)想,不妥之處,懇請各位教師指正。一.我對教材的理解(教材分析)——參考教學(xué)參考書《乘除法的意義和各部分間的關(guān)系》是人教版小學(xué)四年級下冊第一單元四則運(yùn)算中第2課時的教學(xué)內(nèi)容。本課是在學(xué)生對整數(shù)乘除法有了較多的接觸,積累了豐富的感性認(rèn)識并掌握了相應(yīng)的基礎(chǔ)知識和技能的基礎(chǔ)上進(jìn)行抽象、概括,上升到理性的認(rèn)識。為后面學(xué)習(xí)的四則運(yùn)算打基礎(chǔ),也為以后學(xué)習(xí)小數(shù)、分?jǐn)?shù)的意義和關(guān)系做鋪墊。二.學(xué)情分析(根據(jù)考評要求,可不說)因?yàn)槟挲g特征決定了四年級學(xué)生活潑好奇好動,雖具一定的抽象思維能力,但仍然以形象思維為主;就知識層面上,已經(jīng)學(xué)習(xí)了簡單整數(shù)乘除法,對整數(shù)乘除法及各部分名稱有初步的感性認(rèn)知,初步具備了理性認(rèn)知學(xué)習(xí)的基礎(chǔ);同時又存在個體差異,多數(shù)學(xué)生思維活躍,數(shù)學(xué)興趣濃厚,表現(xiàn)欲望強(qiáng)烈,少數(shù)學(xué)生缺乏積極性,學(xué)習(xí)被動。
一、說教材《筆算不進(jìn)位乘法》是在學(xué)生學(xué)會表內(nèi)乘法,整十、整百數(shù)乘一位數(shù)的口算、萬以內(nèi)加減法的基礎(chǔ)上進(jìn)行編排的教學(xué)內(nèi)容。教材根據(jù)學(xué)生已有的基礎(chǔ),來引領(lǐng)學(xué)生推導(dǎo)出筆算的方法,并聯(lián)系實(shí)際情景,使學(xué)生深刻的體會到多位數(shù)乘一位數(shù)在現(xiàn)實(shí)生活中的應(yīng)用。同時,本節(jié)課也為學(xué)生繼續(xù)學(xué)習(xí)《筆算進(jìn)位乘法》提供了算理依據(jù)和算法模型。因此,本課時的內(nèi)容在本單元中占據(jù)重要的地位。結(jié)合教材分析,我確立了以下的教學(xué)目標(biāo):教學(xué)目標(biāo):使學(xué)生學(xué)會乘法豎式的書寫格式,理解筆算乘法的算理,掌握筆算乘法的計(jì)算方法。過程與方法中,讓學(xué)生經(jīng)歷多位數(shù)乘一位數(shù)(不進(jìn)位)的計(jì)算過程,體驗(yàn)計(jì)算方法的多樣化。使學(xué)生在學(xué)習(xí)活動中獲得成功,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣。教學(xué)重、難點(diǎn):使學(xué)生掌握多位數(shù)乘一位數(shù)的筆算方法及乘法豎式書寫格式。理解多位數(shù)乘一位數(shù)的筆算算理。
三、說教材的重點(diǎn)和難點(diǎn)教學(xué)重點(diǎn)是:通過觀察、討論,讓學(xué)生探究發(fā)現(xiàn)三角形的不同分類方法,從而進(jìn)一步掌握三角形的特征。教學(xué)難點(diǎn)是:通過實(shí)踐操作,讓學(xué)生理解掌握等腰三角形和等邊三角形的基本特征及其關(guān)系。四、說教學(xué)理念1、波利亞說:“學(xué)習(xí)任何知識的最佳途經(jīng)都是由自己去發(fā)現(xiàn),因?yàn)檫@種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的規(guī)律、性質(zhì)和內(nèi)在聯(lián)系”。學(xué)生的學(xué)習(xí)過程是一個主動建構(gòu)知識的過程,教師要激活學(xué)生先前的知識經(jīng)驗(yàn),創(chuàng)設(shè)具體情境,讓學(xué)生在經(jīng)歷、體驗(yàn)、探索中真正感悟。2、體現(xiàn)學(xué)生的主體作用,把握好教師的主導(dǎo)地位,讓學(xué)生在活動中體驗(yàn),在體驗(yàn)中學(xué)習(xí)、在學(xué)習(xí)中感悟。 3、突出體現(xiàn)教學(xué)的16字原則:主體探究、創(chuàng)境激趣、合作互動、創(chuàng)新發(fā)展。 五、說教法1、運(yùn)用操作法,確定每個三角形的三個內(nèi)角各是什么角。 2、通過比較法,得出各個三角形的異同。3、采用探究法,找出等腰三角形和等邊三角形的聯(lián)系。 4、通過游戲與練習(xí)內(nèi)化新知。