【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為_(kāi)_______.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1和X2,根據(jù)市場(chǎng)分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個(gè)項(xiàng)目上各投資100萬(wàn)元, Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤(rùn),求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對(duì)于投資者有什么建議? 解:(1)題目可知,投資項(xiàng)目A和B所獲得的利潤(rùn)Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說(shuō)明投資A項(xiàng)目比投資B項(xiàng)目期望收益要高;同時(shí) ,說(shuō)明投資A項(xiàng)目比投資B項(xiàng)目的實(shí)際收益相對(duì)于期望收益的平均波動(dòng)要更大.因此,對(duì)于追求穩(wěn)定的投資者,投資B項(xiàng)目更合適;而對(duì)于更看重利潤(rùn)并且愿意為了高利潤(rùn)承擔(dān)風(fēng)險(xiǎn)的投資者,投資A項(xiàng)目更合適.
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過(guò)點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
課前小測(cè)1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項(xiàng)和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項(xiàng)之和最大.( )(3)在等差數(shù)列中,Sn是其前n項(xiàng)和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項(xiàng)數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項(xiàng)的和為165,所有偶數(shù)項(xiàng)的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項(xiàng).]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項(xiàng)公式是an=2n-48,則Sn取得最小值時(shí),n為_(kāi)_______.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項(xiàng)的和最小,即n=23或24.]二、典例解析例8.某校新建一個(gè)報(bào)告廳,要求容納800個(gè)座位,報(bào)告廳共有20排座位,從第2排起后一排都比前一排多兩個(gè)座位. 問(wèn)第1排應(yīng)安排多少個(gè)座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項(xiàng)和為S_n。
1.判斷正誤(正確的打“√”,錯(cuò)誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線越“陡峭”. ( )(3)函數(shù)在某個(gè)區(qū)間上變化越快,函數(shù)在這個(gè)區(qū)間上導(dǎo)數(shù)的絕對(duì)值越大.( )(4)判斷函數(shù)單調(diào)性時(shí),在區(qū)間內(nèi)的個(gè)別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯(cuò)誤.(3)√ 函數(shù)在某個(gè)區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對(duì)值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
一、 問(wèn)題導(dǎo)學(xué)前面兩節(jié)所討論的變量,如人的身高、樹(shù)的胸徑、樹(shù)的高度、短跑100m世界紀(jì)錄和創(chuàng)紀(jì)錄的時(shí)間等,都是數(shù)值變量,數(shù)值變量的取值為實(shí)數(shù).其大小和運(yùn)算都有實(shí)際含義.在現(xiàn)實(shí)生活中,人們經(jīng)常需要回答一定范圍內(nèi)的兩種現(xiàn)象或性質(zhì)之間是否存在關(guān)聯(lián)性或相互影響的問(wèn)題.例如,就讀不同學(xué)校是否對(duì)學(xué)生的成績(jī)有影響,不同班級(jí)學(xué)生用于體育鍛煉的時(shí)間是否有差別,吸煙是否會(huì)增加患肺癌的風(fēng)險(xiǎn),等等,本節(jié)將要學(xué)習(xí)的獨(dú)立性檢驗(yàn)方法為我們提供了解決這類問(wèn)題的方案。在討論上述問(wèn)題時(shí),為了表述方便,我們經(jīng)常會(huì)使用一種特殊的隨機(jī)變量,以區(qū)別不同的現(xiàn)象或性質(zhì),這類隨機(jī)變量稱為分類變量.分類變量的取值可以用實(shí)數(shù)表示,例如,學(xué)生所在的班級(jí)可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時(shí)候,這些數(shù)值只作為編號(hào)使用,并沒(méi)有通常的大小和運(yùn)算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關(guān)聯(lián)性問(wèn)題.
1.對(duì)稱性與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時(shí),C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時(shí),中間的一項(xiàng)C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時(shí),中間的兩項(xiàng)C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時(shí)取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項(xiàng)式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開(kāi)式的各二項(xiàng)式系數(shù)之和為2^n1. 在(a+b)8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 ,在(a+b)9的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 . 解析:因?yàn)?a+b)8的展開(kāi)式中有9項(xiàng),所以中間一項(xiàng)的二項(xiàng)式系數(shù)最大,該項(xiàng)為C_8^4a4b4=70a4b4.因?yàn)?a+b)9的展開(kāi)式中有10項(xiàng),所以中間兩項(xiàng)的二項(xiàng)式系數(shù)最大,這兩項(xiàng)分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.確定研究對(duì)象,明確哪個(gè)是解釋變量,哪個(gè)是響應(yīng)變量;2.由經(jīng)驗(yàn)確定非線性經(jīng)驗(yàn)回歸方程的模型;3.通過(guò)變換,將非線性經(jīng)驗(yàn)回歸模型轉(zhuǎn)化為線性經(jīng)驗(yàn)回歸模型;4.按照公式計(jì)算經(jīng)驗(yàn)回歸方程中的參數(shù),得到經(jīng)驗(yàn)回歸方程;5.消去新元,得到非線性經(jīng)驗(yàn)回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測(cè)數(shù)據(jù)列于表中: 經(jīng)計(jì)算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說(shuō)明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測(cè)溫度為35℃時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).
甲方:xxx安裝工程有限公司 乙方:xxx廣告裝飾有限公司依據(jù)《中華人民共和國(guó)合同法》和有關(guān)法律、法規(guī)規(guī)定,乙方接受甲方的設(shè)計(jì),就設(shè)計(jì)相關(guān)事項(xiàng),雙方經(jīng)協(xié)商一致,簽訂本合同,信守執(zhí)行: 一、委托設(shè)計(jì)事項(xiàng):甲方委托乙方為其設(shè)計(jì)“(廣廈建工)標(biāo)志”。二、設(shè)計(jì)費(fèi)用:設(shè)計(jì)費(fèi)用總計(jì)為:人民幣2600元 (大寫(xiě):貳仟陸佰元整)。三、付款方式:甲方需在合同簽訂之日起15個(gè)工作日內(nèi),向乙方支付設(shè)計(jì)全款,付款方式為一次性現(xiàn)金支付或轉(zhuǎn)賬。四、設(shè)計(jì)交付方式:1、乙方自合同簽訂之日起15日內(nèi),以電子稿形式向甲方交付設(shè)計(jì)方案。
委托方: 景泰縣人民檢察院 (以下簡(jiǎn)稱甲方)受托方: 甘肅新居尚裝飾工程有限公司 (以下簡(jiǎn)稱乙方)甲方因裝修工程的需要,委托乙方進(jìn)行室內(nèi)裝修設(shè)計(jì)工作,經(jīng)雙方協(xié)商一致,簽訂本合同。 一、設(shè)計(jì)工程概況1.設(shè)計(jì)工程名稱: 景泰縣檢察院未成年幫教矯正中心 2.設(shè)計(jì)工程地點(diǎn): 白銀市景泰縣 3.設(shè)計(jì)工程面積約: 162 ㎡ 4.設(shè)計(jì)工程范圍: 景泰縣檢察院未成年幫教矯正中心室內(nèi)裝飾工程設(shè)計(jì) 二、設(shè)計(jì)時(shí)間:2017年11月9日1.設(shè)計(jì)期限:設(shè)計(jì)期限為 15 天,從乙方收到甲方支付的定金后開(kāi)始計(jì)算,到向甲方交付全套設(shè)計(jì)圖紙之日為止。因甲方變更設(shè)計(jì)要求或?qū)σ曳揭庖?jiàn)未及時(shí)答復(fù),其耽誤的時(shí)間應(yīng)從合同約定的設(shè)計(jì)期限中相應(yīng)扣除。
專業(yè)化推進(jìn)公益普法。市縣兩級(jí)司法行政部門均配備普法依法治理工作專職工作隊(duì)伍,全市107個(gè)基層司法所、56個(gè)律師事務(wù)所、29個(gè)基層法律服務(wù)所以及5400余名人民調(diào)解員,11223名“法律明白人”都擔(dān)負(fù)著法治宣傳任務(wù)。組建“八五普法講師團(tuán)”“重大工程項(xiàng)目律師服務(wù)團(tuán)”“工會(huì)法律服務(wù)律師團(tuán)”“市檢察院師資人才庫(kù)”“教育系統(tǒng)普法講師團(tuán)”等多個(gè)專業(yè)法律服務(wù)團(tuán),推進(jìn)法律專業(yè)人才參與普法實(shí)踐。全市各縣(市、區(qū))、各行業(yè)、各單位都成立了本系統(tǒng)的普法志愿者隊(duì)伍,定期開(kāi)展普法志愿活動(dòng),全市4000多名普法志愿者長(zhǎng)年活躍在基層,成為推動(dòng)傳播法治聲音的重要力量。數(shù)字化打造普法品牌。利用新媒體新技術(shù)開(kāi)展精準(zhǔn)普法。積極打造集微信、微博、“今日頭條”客戶端、官方網(wǎng)站“四位一體”的政務(wù)公開(kāi)普法新平臺(tái),市、縣兩級(jí)司法局全部建成了官網(wǎng)、微博、微信、手機(jī)報(bào)四大普法平臺(tái),全市各單位、部門(行業(yè))共開(kāi)通普法微博、微信公眾服務(wù)號(hào)、手機(jī)APP1000多個(gè)。
一是精心組織抓的緊。整頓之初,我們就研究制定了實(shí)施方案,成立了整頓領(lǐng)導(dǎo)機(jī)構(gòu),將整頓劃分為學(xué)習(xí)動(dòng)員、查找問(wèn)題、鞏固成果三個(gè)階段,分步實(shí)施,各個(gè)環(huán)節(jié)都提出具體的要求和標(biāo)準(zhǔn),并制定了嚴(yán)明的整頓紀(jì)律,從而使整個(gè)整頓工作有條不紊地得以進(jìn)行。二是學(xué)習(xí)認(rèn)真認(rèn)識(shí)高。動(dòng)員大會(huì)后,及時(shí)開(kāi)展了集中學(xué)習(xí)活動(dòng),全校同志人人記了筆記,認(rèn)真遵守考勤制度,在學(xué)習(xí)期間,未出現(xiàn)遲到、曠課等不良現(xiàn)象。通過(guò)學(xué)習(xí),同志們的思想認(rèn)識(shí)都有了明顯提高,都能以認(rèn)真嚴(yán)謹(jǐn)?shù)膽B(tài)度積極參加各個(gè)階段活動(dòng)。三是自我剖析挖的深。由于同志們認(rèn)識(shí)到位,思想上重視,從而在自我剖析時(shí)均能深挖細(xì)找,勇于自我批評(píng),圍繞組織紀(jì)律、工作紀(jì)律、政治紀(jì)律三大方面,均找準(zhǔn)了個(gè)人及各自室、所存在的突出問(wèn)題,并對(duì)這些問(wèn)題產(chǎn)生的思想根源進(jìn)行了深刻反思。
二、認(rèn)真貫徹執(zhí)行學(xué)校教職工代表大會(huì)的決議及上級(jí)工會(huì)的決定,負(fù)責(zé)主持學(xué)校工會(huì)的日常工作?! ∪?、制定學(xué)校工會(huì)的各項(xiàng)工作計(jì)劃,各種會(huì)議的組織實(shí)施及各類學(xué)習(xí)的安排,并做到有布置、有檢查、有落實(shí)、有總結(jié)?! ∷?、圍繞學(xué)校教育教學(xué)、建設(shè),組織教職工開(kāi)展勞動(dòng)競(jìng)賽、合理化建議、教育改革和教育創(chuàng)新活動(dòng)。
2、加強(qiáng)法律法規(guī)等教育。利用請(qǐng)進(jìn)來(lái)、派下去等辦法進(jìn)行業(yè)務(wù)、法律、法規(guī)、心理學(xué)、安全生產(chǎn)等知識(shí)培訓(xùn)。一是邀請(qǐng)市總工會(huì)領(lǐng)導(dǎo)上課,一期授訓(xùn)120多人;二是利用全國(guó)總工會(huì)女工部派下來(lái)的心理學(xué)專家到村、企業(yè)上課,六期受訓(xùn)560人;三是利用新建工會(huì)召開(kāi)職工代表大會(huì)之際上安全生產(chǎn)課,八期受訓(xùn)250人;四是與團(tuán)工委等聯(lián)合開(kāi)展了“綜治進(jìn)民企”知識(shí)競(jìng)賽,與安監(jiān)所等聯(lián)合開(kāi)展了“安全知識(shí)”競(jìng)賽。此外,各村、企業(yè)工會(huì)結(jié)合本單位實(shí)際,3、加強(qiáng)職能技能教育。一是街道工會(huì)與經(jīng)發(fā)辦等有關(guān)部門組織開(kāi)展了兩次消防演習(xí),觀摩人數(shù)達(dá)250人次;二是各工會(huì)廣泛開(kāi)展“學(xué)技術(shù)、比技能”為主要內(nèi)容的操作運(yùn)動(dòng)會(huì),金輪集團(tuán)工會(huì)從6月份開(kāi)始在各分廠開(kāi)展了初賽,參與項(xiàng)目15個(gè),參與人數(shù)達(dá)520人;集團(tuán)工會(huì)打算于九月份進(jìn)行決賽。
(二)開(kāi)展主題活動(dòng),激發(fā)職工建功立業(yè)熱情。緊扣高質(zhì)量發(fā)展主線,結(jié)合行業(yè)實(shí)際,依托職工之家工作室,實(shí)施建功新時(shí)代主力軍行動(dòng),開(kāi)展技能比武、職工創(chuàng)新和班組競(jìng)賽,激勵(lì)和引導(dǎo)職工爭(zhēng)做技術(shù)能手、安全標(biāo)兵、勞動(dòng)模范。(三)做實(shí)關(guān)心關(guān)愛(ài),提升職工幸福感獲得感安全感。關(guān)心職工生活,開(kāi)展多種形式的慰問(wèn)走訪工作,維護(hù)好職工的合法權(quán)益,以更有效的服務(wù)回應(yīng)職工呼聲。深化“安康杯”競(jìng)賽等群眾性安全生產(chǎn)工作,切實(shí)維護(hù)職工群眾安全健康權(quán)益。扎實(shí)做好風(fēng)險(xiǎn)隱患排查化解工作,切實(shí)維護(hù)勞動(dòng)領(lǐng)域政治安全、維護(hù)職工隊(duì)伍和工會(huì)組織的團(tuán)結(jié)統(tǒng)一,積極推進(jìn)建設(shè)更高水平的工會(huì)建設(shè)。(四)緊緊圍繞中心工作,推動(dòng)工會(huì)整體工作上臺(tái)階。圍繞中心工作,加強(qiáng)陣地建設(shè)和管理,不斷提高協(xié)調(diào)服務(wù)能力和水平,密切關(guān)注職工思想動(dòng)向,做好新聞宣傳的組織策劃,講好工會(huì)故事、職工故事,傳播職工聲音。積極探索工會(huì)工作的新方法,力爭(zhēng)開(kāi)展一些引領(lǐng)風(fēng)尚、高層次、有品位、有特色的活動(dòng),推動(dòng)工會(huì)工作增能力提水平上臺(tái)階。
(三)規(guī)上工業(yè)企業(yè)研發(fā)方面一是壓實(shí)屬地責(zé)任。規(guī)上工業(yè)企業(yè)研發(fā)實(shí)行屬地管理,要充分調(diào)動(dòng)各鎮(zhèn)辦、開(kāi)發(fā)區(qū)的工作積極性。不但要把數(shù)報(bào)好還要督促企業(yè)做好賬務(wù)資料的規(guī)范工作,對(duì)照市工信局、統(tǒng)計(jì)局發(fā)放的賬務(wù)和資料規(guī)范要求,缺啥補(bǔ)啥。二是形成工作合力。各鎮(zhèn)辦、開(kāi)發(fā)區(qū)做好企業(yè)的宣傳動(dòng)員,爭(zhēng)取配合,積極填報(bào)研發(fā)月報(bào),對(duì)找不到聯(lián)系人,不配合的企業(yè)或者會(huì)計(jì),由屬地負(fù)責(zé)做工作,思想認(rèn)識(shí)上要提高站位,不能以“沒(méi)研發(fā)和沒(méi)有賬、會(huì)計(jì)不配合”等理由敷衍應(yīng)付。分管副職和統(tǒng)計(jì)站長(zhǎng)負(fù)責(zé)與市工信局、統(tǒng)計(jì)局做好工作對(duì)接,并積極引導(dǎo)和配合第三方公司采取集中培訓(xùn)或者上門指導(dǎo)的辦法對(duì)轄區(qū)的規(guī)上工業(yè)全部指導(dǎo)到位。稅務(wù)局組織人員向企業(yè)宣傳研發(fā)加計(jì)扣除的相關(guān)優(yōu)惠政策,尤其打消企業(yè)的稅務(wù)部門可能要查賬的顧慮。工信局、統(tǒng)計(jì)局要組織統(tǒng)計(jì)站、第三方公司加強(qiáng)對(duì)填報(bào)企業(yè)的賬務(wù)規(guī)范的指導(dǎo),使研發(fā)全覆蓋工作既有數(shù)量,又有質(zhì)量,既要增加報(bào)研發(fā)數(shù)據(jù)的企業(yè),又要每家企業(yè)的憑證資料完善齊全。
★教后記:歷史教學(xué)的最高目標(biāo)不是單純的記憶和培養(yǎng)能力,而是樹(shù)立正確的歷史觀,培養(yǎng)學(xué)生的歷史責(zé)任感。從這一點(diǎn)講,新課標(biāo)及新課標(biāo)教材給老師極大的發(fā)揮空間,擺脫了以往的“教教材”,真正實(shí)現(xiàn)了 “用教材教”,只有這樣,教師才不只是一個(gè)“備課”的“教書(shū)匠”,而是一名設(shè)計(jì)教學(xué)“設(shè)計(jì)師”,以教材為磚瓦,建造有自己獨(dú)特風(fēng)格的教育大廈。這是我設(shè)計(jì)教學(xué)的出發(fā)點(diǎn)。開(kāi)放式的課堂需要思想開(kāi)放的教師,但對(duì)教師的課堂駕馭能力要求更高,否則“一放就活,一活就亂”,只求課堂熱鬧,熱鬧過(guò)后,學(xué)生一無(wú)所獲,那么這樣的開(kāi)放課堂依然是失敗的。開(kāi)放式的課堂并不是任由學(xué)生說(shuō),教師必要的引導(dǎo)與客觀的評(píng)價(jià)尤為重要。★問(wèn)題解答⊙【學(xué)思之窗】請(qǐng)談?wù)?,火車機(jī)車的不斷改進(jìn),給國(guó)民經(jīng)濟(jì)發(fā)展、百姓生活帶來(lái)怎樣的影響?答案提示:運(yùn)輸量大,有利于各地區(qū)的物資交流和勞動(dòng)力流動(dòng),促進(jìn)經(jīng)濟(jì)發(fā)展;交通便利快捷;機(jī)車內(nèi)部環(huán)境舒適,給百姓出行帶來(lái)方便。
1.通過(guò)對(duì)德國(guó)魯爾工業(yè)區(qū)、我國(guó)的遼中南工業(yè)區(qū)的案例分析和比較,讓學(xué)生理解傳統(tǒng)工業(yè)地域形成的主要區(qū)位條件和衰落的原因;2.結(jié)合魯爾工業(yè)區(qū)產(chǎn)生的環(huán)境污染等局面,理解工業(yè)生產(chǎn)活動(dòng)對(duì)地理環(huán)境的影響,并探討綜合整治的措施;3.通過(guò)對(duì)意大利中部和東北部工業(yè)區(qū)、美國(guó)“硅谷”的案例分析和比較,讓學(xué)生理解新工業(yè)地域形成的主要區(qū)位條件和衰落的原因;4.結(jié)合新工業(yè)地域和地理環(huán)境的關(guān)系,加深學(xué)生對(duì)工業(yè)生產(chǎn)活動(dòng)對(duì)地理環(huán)境的影響的理解?!窘虒W(xué)重、難點(diǎn)及解決辦法】重點(diǎn):分析工業(yè)區(qū)位因素,舉例說(shuō)明工業(yè)地域的形成條件與發(fā)展特點(diǎn)難點(diǎn):結(jié)合實(shí)例說(shuō)明工業(yè)生產(chǎn)活動(dòng)對(duì)地理環(huán)境的影響解決方法:比較歸納法 知識(shí)遷移應(yīng)用 案例分析法 自主學(xué)習(xí)與合作探究 【教學(xué)準(zhǔn)備】多媒體課件缺勤登記:
③在薩斯索羅地區(qū)集聚的相關(guān)企業(yè)和服務(wù)性機(jī)構(gòu)有哪些?④薩斯索羅瓷磚工業(yè)小區(qū)的生產(chǎn)—銷售—服務(wù)網(wǎng)絡(luò)中支撐企業(yè)、輔助性企業(yè)、服務(wù)性企業(yè)、服務(wù)性機(jī)構(gòu)有哪些?學(xué)生回答問(wèn)題后教師小結(jié):意大利的新工業(yè)區(qū),以中小企業(yè)集聚的工業(yè)小區(qū)為獨(dú)特的發(fā)展模式。工業(yè)小區(qū)的優(yōu)勢(shì)是有助于加強(qiáng)專業(yè)化,提高生產(chǎn)效率,降低生產(chǎn)成本,增強(qiáng)在市場(chǎng)上的競(jìng)爭(zhēng)力。完成課本70頁(yè)活動(dòng):1. 比較溫州鄉(xiāng)鎮(zhèn)企業(yè)與意大利新工業(yè)區(qū)的發(fā)展有什么異同(相同:有大批廉價(jià)勞動(dòng)力,企業(yè)規(guī)模小,以輕工業(yè)為主,企業(yè)生產(chǎn)高度專業(yè)化,資本集中程度低。不同:最大的不同是意大利工業(yè)小區(qū)密切聯(lián)系協(xié)作,共同形成巨型企業(yè),溫州雖生產(chǎn)同種產(chǎn)品,但是聯(lián)系協(xié)作不如意,形成多家企業(yè)競(jìng)爭(zhēng)局面,規(guī)模效應(yīng)大減。)2. 溫州鄉(xiāng)鎮(zhèn)企業(yè)的發(fā)展有哪些些問(wèn)題?你能為其解決這些問(wèn)題提出合理化的建議嗎?(加大技術(shù)投入,企業(yè)間聯(lián)系協(xié)作,杜絕惡性競(jìng)爭(zhēng)等)