第二關(guān):比一比,誰(shuí)最快(第2題)在比賽游戲的過(guò)程既鞏固了算法,又加強(qiáng)了簡(jiǎn)便算法的運(yùn)用。第三關(guān):動(dòng)腦筋,巧計(jì)算先用多媒體出情境圖,接著出示題目:牛奶店的張老板進(jìn)了一批牛奶,6瓶裝的30箱和12瓶裝的70箱,你能幫老板算一算一共有多少瓶?第四關(guān):小老板,會(huì)算賬(第3題)讓學(xué)生當(dāng)一回老板,算一算顧客要付多少錢?讓學(xué)生運(yùn)用剛學(xué)習(xí)的知識(shí)去解決簡(jiǎn)單的實(shí)際問(wèn)題,激發(fā)了學(xué)生的學(xué)習(xí)興趣,也體會(huì)到數(shù)學(xué)與實(shí)際生活的緊密聯(lián)系。[這些練習(xí)由易到難,重在加深學(xué)生對(duì)這節(jié)課所學(xué)知識(shí)的鞏固。并且將練習(xí)變?yōu)閷W(xué)生認(rèn)識(shí)生活,解決生活中的實(shí)際問(wèn)題,體現(xiàn)了“數(shù)學(xué)源于生活,賦于生活,用于生活”的思想。注意了學(xué)生實(shí)際能力的培養(yǎng),提高了學(xué)生運(yùn)用數(shù)學(xué)知識(shí)于生活的能力。]
【設(shè)計(jì)意圖:先讓學(xué)生觀察、猜想,然后自己想辦法“證明”自己的猜想。這樣設(shè)計(jì),給學(xué)生自主思考的時(shí)間和空間。在獨(dú)立思考的基礎(chǔ)上,再小組合作,把動(dòng)腦思考與動(dòng)手操作有機(jī)結(jié)合,把獨(dú)立思考與小組合作有機(jī)結(jié)合。有利于提高探索活動(dòng)的實(shí)效性?!拷處熝惨?,參與學(xué)生的操作和討論,找出有代表性的幾種“證明”方法。3.交流討論師:差不多了吧?能解釋為什么把4個(gè)蘋果放入3個(gè)抽屜,會(huì)出現(xiàn)總有一個(gè)抽屜中至少放2個(gè)蘋果這一現(xiàn)象了嗎?【學(xué)情預(yù)設(shè):】第一種:枚舉法請(qǐng)學(xué)生觀察不同的放法,能發(fā)現(xiàn)什么?引導(dǎo)學(xué)生發(fā)現(xiàn):每一種擺放情況,都一定有一個(gè)抽屜中至少放2個(gè)蘋果。也就是說(shuō)不管怎么放,總有一個(gè)抽屜中至少放2個(gè)蘋果。第二種:假設(shè)法。還有沒(méi)有用不同的方法來(lái)驗(yàn)證把4個(gè)蘋果放入3個(gè)抽屜,總有一個(gè)抽屜中至少放2個(gè)蘋果這一現(xiàn)象嗎?
四、教學(xué)過(guò)程1.創(chuàng)設(shè)情境 導(dǎo)入課題同學(xué)們:課前,我讓大家在生活中尋找圓柱,你們找到了嗎?誰(shuí)愿意來(lái)展示一下。李老師也找到一些圖片,我們一起來(lái)欣賞:(多媒體展示生活中的圓柱圖片)生活中的圓柱可真多呀!為什么要把它們要設(shè)計(jì)成圓柱形呢?學(xué)生可能會(huì)說(shuō):因?yàn)閳A柱沒(méi)有棱角,很光滑,所以欄桿、柱子要設(shè)計(jì)成圓柱形;因?yàn)閳A柱可以滾動(dòng),所以壓路機(jī)、刷墻滾子設(shè)計(jì)成圓柱形……同學(xué)們,你們說(shuō)得很好,圓柱有這么廣泛的用途,今天讓我們進(jìn)一步從數(shù)學(xué)的角度來(lái)認(rèn)識(shí)圓柱。(板書“圓柱的認(rèn)識(shí)”)2.自主學(xué)習(xí) 初步認(rèn)識(shí)接下來(lái),我讓學(xué)生結(jié)合自帶的圓柱自學(xué)教材第10—11頁(yè)上的內(nèi)容。指導(dǎo)學(xué)生學(xué)會(huì)看書,從書本上獲取知識(shí)是學(xué)習(xí)數(shù)學(xué)的重要方法。因此,在感性認(rèn)識(shí)圓柱的基礎(chǔ)上,我讓學(xué)生通過(guò)自主閱讀獲取圓柱各部分的名稱。 同學(xué)們:通過(guò)自學(xué),你們都獲取了哪些知識(shí)?請(qǐng)拿著手中的圓柱來(lái)說(shuō)一說(shuō)?
2、提出問(wèn)題:3張大餅怎樣能夠平均分給唐僧師徒四人呢?每人得到大餅的多少?gòu)埬兀?、揭示課題:分餅二、動(dòng)手操作,探究新知:活動(dòng)操作一:3張餅平均分給4個(gè)人。1、要求學(xué)生用準(zhǔn)備好的圓紙片代表餅,剪一剪,拼一拼,畫一畫,小組交流自己的想法。教師巡視并進(jìn)行指導(dǎo)。2、各小組匯報(bào)分法及分得的結(jié)果。(指名回答)第一種分法:把一張一張的餅平均分成4份,每人分每張餅的,共分一張餅的。并請(qǐng)學(xué)生上臺(tái)演示分的整個(gè)過(guò)程。第二種分法:把3張餅疊起來(lái),平均分成4份,每人分得3張餅的,也是張餅,請(qǐng)學(xué)生上臺(tái)演示分的整個(gè)過(guò)程。3、演示學(xué)生兩種分法的圖片:4、請(qǐng)觀察,這個(gè)分?jǐn)?shù)有什么特點(diǎn),分子比分母小,你還能舉幾個(gè)這樣的例子嗎?像這樣的分?jǐn)?shù)叫作真分?jǐn)?shù),真分?jǐn)?shù)小于1。
【教學(xué)目標(biāo)】1、知識(shí)目標(biāo):結(jié)合具體情境,使學(xué)生認(rèn)識(shí)東、南、西、北四個(gè)方向,能夠用給定的一個(gè)方向辨認(rèn)其余的三個(gè)方向,并能用這些詞語(yǔ)描述物體所在的方位。2、能力目標(biāo):培養(yǎng)學(xué)生良好的觀察能力和空間想象能力。3、情感目標(biāo):體驗(yàn)數(shù)學(xué)與現(xiàn)實(shí)生活的密切關(guān)系,增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí)?!窘虒W(xué)重難點(diǎn)】使學(xué)生認(rèn)識(shí)東、南、西、北四個(gè)方向,并能根據(jù)學(xué)生自身的方位辨認(rèn)東、南、西、北這四個(gè)方向?!窘虒W(xué)準(zhǔn)備】1、掛圖、指南針2、學(xué)具準(zhǔn)備:準(zhǔn)備主題圖中相關(guān)的學(xué)具卡片或?qū)嵨??!窘虒W(xué)過(guò)程】一、創(chuàng)設(shè)情境,引入新知:同學(xué)們,你們想去北京嗎?今天我們?nèi)⒂^參觀吧?二、愉快體驗(yàn),探究新知1、認(rèn)識(shí)方向:出示主題圖:我們來(lái)到了北京的天安門廣場(chǎng),你們看見(jiàn)了哪些建筑物?愿意當(dāng)小導(dǎo)游為大家介紹一個(gè)嗎?(先同桌之間互相練習(xí)解說(shuō),師出示教學(xué)掛圖,介紹天安門的地理位置)引出例1)
(4)從平均分看,兩隊(duì)的平均分相同,實(shí)力大體相當(dāng);從折線的走勢(shì)看,甲隊(duì)比賽成績(jī)呈上升趨勢(shì),而乙隊(duì)比賽成績(jī)呈下降趨勢(shì);從獲勝場(chǎng)數(shù)看,甲隊(duì)勝三場(chǎng),乙隊(duì)勝兩場(chǎng),甲隊(duì)成績(jī)較好;從方差看,甲隊(duì)比賽成績(jī)比乙隊(duì)比賽成績(jī)波動(dòng)小,甲隊(duì)成績(jī)較穩(wěn)定.綜上所述,選派甲隊(duì)參賽更能取得好成績(jī).方法總結(jié):本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊(duì)的成績(jī),然后從平均數(shù)、方差的角度來(lái)考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設(shè)計(jì)數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標(biāo)準(zhǔn)差:方差的算術(shù)平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個(gè)量的探索過(guò)程,通過(guò)實(shí)例體會(huì)用樣本估計(jì)總體的統(tǒng)計(jì)思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力.通過(guò)小組合作,培養(yǎng)學(xué)生的合作意識(shí);通過(guò)解決實(shí)際問(wèn)題,讓學(xué)生體會(huì)數(shù)學(xué)與生活的密切聯(lián)系.
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線分成4個(gè)等腰直角三角形,因此在正方形中解決問(wèn)題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過(guò)正方形ABCD的對(duì)角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說(shuō)明AP=CP,由正方形對(duì)角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線互相垂直平分證明線段相等;(2)無(wú)論是正方形還是矩形,經(jīng)常連接對(duì)角線,這樣可以使分散的條件集中.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
1.經(jīng)歷從不同方向觀察物體的活動(dòng)過(guò)程,發(fā)展空間觀念.2.在觀察的過(guò)程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的形狀.3.能識(shí)別從三個(gè)方向看到的簡(jiǎn)單物體的形狀,會(huì)畫立方體及簡(jiǎn)單組合體從三個(gè)方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停弧⑶榫硨?dǎo)入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩(shī)句:“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.不識(shí)廬山真面目,只緣身在此山中.”體驗(yàn)出其中的意境嗎?你能挖掘出其中蘊(yùn)含的數(shù)學(xué)道理嗎?讓我們一起探索新知吧!二、合作探究探究點(diǎn)一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個(gè)幾何體從上面看,共有2行,第一行能看到3個(gè)小正方形,第二行能看到2個(gè)小正方形.故選D.
1.會(huì)用計(jì)算器求平方根和立方根;(重點(diǎn))2.運(yùn)用計(jì)算器探究數(shù)字規(guī)律,提高推理能力.一、情境導(dǎo)入前面我們通過(guò)平方和立方運(yùn)算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點(diǎn)一:利用計(jì)算器進(jìn)行開方運(yùn)算 用計(jì)算器求6+7的值.解:按鍵順序?yàn)椤?+7=SD,顯示結(jié)果為:9.449489743.方法總結(jié):當(dāng)被開方數(shù)不是一個(gè)數(shù)時(shí),輸入時(shí)一定要按鍵.解本題時(shí)常出現(xiàn)的錯(cuò)誤是:■6+7=SD,錯(cuò)的原因是被開方數(shù)是6,而不是6與7的和,這樣在輸入時(shí),對(duì)“6+7”進(jìn)行開方,使得計(jì)算的是6+7而不是6+7,從而導(dǎo)致錯(cuò)誤.K探究點(diǎn)二:利用科學(xué)計(jì)算器比較數(shù)的大小利用計(jì)算器,比較下列各組數(shù)的大?。?1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結(jié)果為1.414213562.按鍵順序:SHIFT■5=,顯示結(jié)果為1.709975947.所以2<35.
討論歸納,總結(jié)出多個(gè)有理數(shù)相乘的規(guī)律:幾個(gè)不等于0的因數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定。當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積的符號(hào)為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積的符號(hào)為正。只要有一個(gè)因數(shù)為0,積就為0。(2)幾個(gè)不等于0的因數(shù)相乘時(shí),積的絕對(duì)值是多少?(生:積的絕對(duì)值是這幾個(gè)因數(shù)的絕對(duì)值的乘積.)例2、計(jì)算:(1) ;(2) 分析:(1)有多個(gè)不為零的有理數(shù)相乘時(shí),可以先確定積的符號(hào),再把絕對(duì)值相乘;(2)若其中有一個(gè)因數(shù)為0,則積為0。解:(1) = (2) =0練習(xí)(1) ,(2) ,(3) 6、探索活動(dòng):把-6表示成兩個(gè)整數(shù)的積,有多少種可能性?把它們?nèi)繉懗鰜?lái)。(三)課堂小結(jié)通過(guò)本節(jié)課的學(xué)習(xí),大家學(xué)會(huì)了什么?(1)有理數(shù)的乘法法則。(2)多個(gè)不等于0的有理數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定。(3)幾個(gè)數(shù)相乘時(shí),如果有一個(gè)因數(shù)是0,則積就為0。(4)乘積是1的兩個(gè)有理數(shù)互為倒數(shù)。(四)作業(yè):課本作業(yè)題
解 由題意可得,今年的年產(chǎn)值為a·(1+10%) 億元,于是明年的年產(chǎn)值為a·(1+10%)·(1+10%)= 1.21a(億元).若去年的年產(chǎn)值為2億元,則明年的年產(chǎn)值為1.21a =1.21×2 = 2.42(億元).答:該企業(yè)明年的年產(chǎn)值將能達(dá)到1.21a億元.由去年的年產(chǎn)值是2億元,可以預(yù)計(jì)明年的年產(chǎn)值是2.42億元.例3 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81的值是10,當(dāng)x = 3時(shí),求該代數(shù)式的值.解 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81=-27m-3n-81, 此時(shí)-27m-3n-81=10, 所以27m+3n=-91.則當(dāng)x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本題采用了一種重要的數(shù)學(xué)思想——“整體思想”.即是考慮問(wèn)題時(shí)不是著眼于他的局部特征,而是把注意力和著眼點(diǎn)放在問(wèn)題的整體結(jié)構(gòu)上,把一些彼此獨(dú)立,但實(shí)質(zhì)上又相互緊密聯(lián)系著的量作為整體來(lái)處理的思想方法.
分析:(1)(2)用乘法的交換、結(jié)合律;(3)(4)用分配律,4.99寫成5-0.01學(xué)生板書完成,并說(shuō)明根據(jù)什么?略例3、某校體育器材室共有60個(gè)籃球。一天課外活動(dòng),有3個(gè)班級(jí)分別計(jì)劃借籃球總數(shù)的 , 和 。請(qǐng)你算一算,這60個(gè)籃球夠借嗎?如果夠了,還多幾個(gè)籃球?如果不夠,還缺幾個(gè)?解:=60-30-20-15 =-5答:不夠借,還缺5個(gè)籃球。練習(xí)鞏固:第41頁(yè)1、2、7、探究活動(dòng) (1)如果2個(gè)數(shù)的積為負(fù)數(shù),那么這2個(gè)數(shù)中有幾個(gè)負(fù)數(shù)?如果3個(gè)數(shù)的積為負(fù)數(shù),那么這3個(gè)數(shù)中有幾個(gè)負(fù)數(shù)?4個(gè)數(shù)呢?5個(gè)數(shù)呢?6個(gè)數(shù)呢?有什么規(guī)律? (2)逆用分配律 第42頁(yè) 5、用簡(jiǎn)便方法計(jì)算(三)課堂小結(jié)通過(guò)本節(jié)課的學(xué)習(xí),大家學(xué)會(huì)了什么?本節(jié)課我們探討了有理數(shù)乘法的運(yùn)算律及其應(yīng)用.乘法的運(yùn)算律有:乘法交換律:a×b=b×a;乘法結(jié)合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理數(shù)的運(yùn)算中,靈活運(yùn)用運(yùn)算律可以簡(jiǎn)化運(yùn)算.(四)作業(yè):課本42頁(yè)作業(yè)題
1、掌握有理數(shù)混合運(yùn)算法則,并能進(jìn)行有理數(shù)的混合運(yùn)算的計(jì)算。2、經(jīng)歷“二十四”點(diǎn)游戲,培養(yǎng)學(xué)生的探究能力[教學(xué)重點(diǎn)]有理數(shù)混合運(yùn)算法則。[教學(xué)難點(diǎn)]培養(yǎng)探索思 維方式。【教學(xué)過(guò)程】情境導(dǎo)入——有理數(shù)的混合運(yùn)算是指一個(gè)算式里含有加、減、乘、除、乘方的多種運(yùn)算.下面的算式里有哪幾種運(yùn)算?3+50÷22×( )-1.有理數(shù)混合運(yùn)算的運(yùn)算順序規(guī)定如下:1 先算乘方,再算乘除,最后算加減;2 同級(jí)運(yùn)算,按照從左至右的順序進(jìn)行;3 如果有括號(hào),就先算小括號(hào)里的,再算中括號(hào)里的,最后算大括號(hào)里的。 加法和減法叫做第一級(jí)運(yùn)算;乘法和除法叫做第二級(jí)運(yùn)算;乘方和開方(今后將會(huì)學(xué)到)叫做第三級(jí)運(yùn)算。注意:可以應(yīng)用運(yùn)算律,適當(dāng)改變運(yùn)算順序,使運(yùn)算簡(jiǎn)便.合作探究——
師生共同歸納法則2、異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。生5:這兩天的庫(kù)存量合計(jì)增加了2噸。(+3)+(-1)=+2 或(+8)+(-6)=+2師:會(huì)不會(huì)出現(xiàn)和為零的情況?提示:可以聯(lián)系倉(cāng)庫(kù)進(jìn)出貨的具體情形。生6:如星期一倉(cāng)庫(kù)進(jìn)貨5噸,出貨5噸,則庫(kù)存量為零。(+5)+(-5)=0師生共同歸納法則3、互為相反數(shù)的兩個(gè)數(shù)相加得零。師:你能用加法法則來(lái)解釋法則3嗎?生7:可用異號(hào)兩數(shù)相加的法則。一般地還有:一個(gè)數(shù)同零相加,仍得這個(gè)數(shù)。小結(jié):運(yùn)算關(guān)鍵:先分類運(yùn)算步驟:先確定符號(hào),再計(jì)算絕對(duì)值做一做:(口答)確定下列各題中和的符號(hào),并說(shuō)明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 計(jì)算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:請(qǐng)四位學(xué)生板演,讓學(xué)生批改并說(shuō)明理由。
(1)用簡(jiǎn)潔明快的語(yǔ)言概括大意,不能超過(guò)200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個(gè),且要分別涉及時(shí)間、路和速度這三個(gè)量.意圖:旨在檢測(cè)學(xué)生的識(shí)圖能力,可根據(jù)學(xué)生情況和上課情況適當(dāng)調(diào)整。說(shuō)明:練習(xí)注意了問(wèn)題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對(duì)同學(xué)的回答,教師給予點(diǎn)評(píng),對(duì)回答問(wèn)題暫時(shí)有困難的同學(xué),教師應(yīng)幫助他們樹立信心。第四環(huán)節(jié):課時(shí)小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運(yùn)用一次函數(shù)解決實(shí)際問(wèn)題時(shí),可以直接從函數(shù)圖象上獲取信息解決問(wèn)題,當(dāng)然也可以設(shè)法得出各自對(duì)應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過(guò)計(jì)算解決問(wèn)題。通過(guò)列出關(guān)系式解決問(wèn)題時(shí),一般首先判斷關(guān)系式的特征,如兩個(gè)變量之間是不是一次函數(shù)關(guān)系?當(dāng)確定是一次函數(shù)關(guān)系時(shí),可求出函數(shù)解析式,并運(yùn)用一次函數(shù)的圖象和性質(zhì)進(jìn)一步求得我們所需要的結(jié)果.
學(xué)習(xí)目標(biāo)1.掌握兩個(gè)一次函數(shù)圖像的應(yīng)用;(重點(diǎn))2.能利用函數(shù)圖象解決實(shí)際問(wèn)題。(難點(diǎn))教學(xué)過(guò)程一、情景導(dǎo)入在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(厘米)與燃燒時(shí)間x(小時(shí))之間的關(guān)系如圖所示.請(qǐng)你根據(jù)圖象所提供的信息回答下列問(wèn)題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點(diǎn)燃到燃盡所用的時(shí)間分別是 小時(shí)、 小時(shí).你會(huì)解答上面的問(wèn)題嗎?學(xué)完本解知識(shí),相信你能很快得出答案。二、 合作探究探究點(diǎn)一:兩個(gè)一次函數(shù)的應(yīng)用(2015?日照模擬)自來(lái)水公司有甲、乙兩個(gè)蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個(gè)蓄水池中水的深度y(米)與注水時(shí)間x(時(shí))之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問(wèn)題.(1)分別求出甲、乙兩個(gè)蓄水池中水的深度y與注水時(shí)間x之間的函數(shù)表達(dá)式;(2)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水池水的深度相同;(3)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水的池蓄水量相同;
四、教學(xué)設(shè)計(jì)反思這節(jié)內(nèi)容是學(xué)生利用數(shù)形結(jié)合的思想去研究正比例函數(shù)的圖象,對(duì)函數(shù)與圖象的對(duì)應(yīng)關(guān)系有點(diǎn)陌生.在教學(xué)過(guò)程中教師應(yīng)通過(guò)情境創(chuàng)設(shè)激發(fā)學(xué)生的學(xué)習(xí)興趣,對(duì)函數(shù)與圖象的對(duì)應(yīng)關(guān)系應(yīng)讓學(xué)生動(dòng)手去實(shí)踐,去發(fā)現(xiàn),對(duì)正比例函數(shù)的圖象是一條直線應(yīng)讓學(xué)生自己得出.在得出結(jié)論之后,讓學(xué)生能運(yùn)用“兩點(diǎn)確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習(xí)活動(dòng)中,鼓勵(lì)學(xué)生積極思考,提高學(xué)生解決實(shí)際問(wèn)題的能力.當(dāng)然,根據(jù)學(xué)生狀況,教學(xué)設(shè)計(jì)也應(yīng)做出相應(yīng)的調(diào)整。如第一環(huán)節(jié):創(chuàng)設(shè)情境 引入課題,固然可以激發(fā)學(xué)生興趣,但也可能容易讓學(xué)生關(guān)注代數(shù)表達(dá)式的尋求,甚至對(duì)部分學(xué)生形成一定的認(rèn)知障礙,因此該環(huán)節(jié)也可以直接開門見(jiàn)山,直入主題,如提出問(wèn)題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個(gè)正比例函數(shù)對(duì)應(yīng)的圖形具有什么特征呢?
觀察 和 的圖象,它們有什么相同點(diǎn)和不同點(diǎn)?學(xué)生小組討論,弄清上述兩個(gè)圖象的異同點(diǎn)。交流討論反比 例函數(shù)圖象是中心對(duì)稱圖形嗎?如果是,請(qǐng)找出對(duì)稱中心.反比例函數(shù)圖象是軸對(duì)稱圖形嗎?如果是,請(qǐng)指出它的對(duì)稱軸.二、隨堂練習(xí)課本隨堂練習(xí) [探索與交流]對(duì)于函數(shù) , 兩支曲線分別位于哪個(gè)象限內(nèi)?對(duì)于函數(shù) ,兩支曲線又分別位于哪個(gè)象限內(nèi)?怎樣區(qū)別這兩個(gè)函數(shù)的圖象。學(xué)生分四人小組全班探索。 三、課堂總結(jié)在進(jìn)行函數(shù)的列表,描點(diǎn)作圖的活動(dòng)中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過(guò)程中,大家要進(jìn)行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當(dāng)k>0時(shí),它的圖像位于一、三象限內(nèi),當(dāng)k<0時(shí),它的圖像位于二、四象限內(nèi);(3)反比例函數(shù)既是中心對(duì)稱圖形,又是軸對(duì)稱圖形。