《比的化簡》是北師大版六年級上冊第52——53頁的教學(xué)內(nèi)容,主要學(xué)習(xí)化簡比的方法。教材聯(lián)系學(xué)生的生活創(chuàng)設(shè)問題情境,讓學(xué)生在解決問題的過程中加深對比的意義的理解,進(jìn)一步感受比、除法、分?jǐn)?shù)的關(guān)系,體會化簡比的必要性,學(xué)會化簡比的方法。在這之前,學(xué)生早已學(xué)過“商不變的性質(zhì)”和“分?jǐn)?shù)的基本性質(zhì)”,最近又認(rèn)識了比,初步理解了比的意義,以及比與除法、分?jǐn)?shù)的關(guān)系,大部分學(xué)生能較為熟練地求比值。比較而言,實際上化簡比與求比值的方法有相通之處,那么借助知識的遷移能幫助學(xué)生順利理解掌握新知識。二、說教學(xué)目標(biāo):知識與能力:會運用商不變的性質(zhì)或分?jǐn)?shù)的基本性質(zhì)化簡比。過程與方法:在實際情境中,讓學(xué)生體會化簡比的必要性,在觀察、比較中理解什么是化簡比,,并能解決一些簡單的實際問題。情感、態(tài)度與價值觀:促進(jìn)知識遷移,培養(yǎng)學(xué)生的概括能力。體驗知識的相通性以及數(shù)學(xué)與生活的聯(lián)系。
接下來引導(dǎo)學(xué)生分析題中數(shù)量關(guān)系:題目要分配什么?按照什么分配?重點思考討論:從3:2這個比中,你能知道什么?接下來鼓勵小組合作嘗試多種方法解答,重點理解按比分配的方法。2、小結(jié):按比分配的應(yīng)用題有什么結(jié)構(gòu)特點?怎樣解答這樣的應(yīng)用題?這樣設(shè)計為學(xué)生提供自主探索的空間。所以在教學(xué)中可以靈活地依據(jù)提出的方法調(diào)換教學(xué)順序,并引導(dǎo)學(xué)生掌握兩種不同的解題方法。安排學(xué)生的小組討論方式能使學(xué)生一開始就暢所欲言,把幾種不同思路比較和聯(lián)系起來,在理解的基礎(chǔ)上才能更好的掌握方法,并注意培養(yǎng)學(xué)生的檢驗?zāi)芰?。第三個環(huán)節(jié):多層訓(xùn)練,形成技能。練習(xí)是數(shù)學(xué)課堂教學(xué)一個重要環(huán)節(jié),我設(shè)計的練習(xí)題力求做到從易到難,由淺入深,有層次,有坡度,新舊知識融合恰當(dāng),形成技能技巧,開拓思維,發(fā)展能力,達(dá)到練習(xí)的預(yù)期目的。
尊敬的領(lǐng)導(dǎo),評委老師:大家好,今天我說課的題目是北師大版小學(xué)數(shù)學(xué)五年級上冊第一單元第五節(jié)《除得盡嗎》。我將會以說教材、說學(xué)生、說教法、說教學(xué)過程、說教學(xué)效果評測、說反思等六各方面進(jìn)行我的說課。一:說教材《除得盡嗎》本節(jié)內(nèi)容是本單元的第五節(jié),是在學(xué)生已經(jīng)學(xué)習(xí)了整數(shù)除整數(shù)、整數(shù)除小樹、小樹除小數(shù)、以及四舍五入保留若干位小樹的基礎(chǔ)之上進(jìn)行設(shè)置的。本節(jié)內(nèi)容的主要知識點就是讓學(xué)生認(rèn)識循環(huán)小數(shù)、表示循環(huán)小數(shù)以及“四舍五入”法取其近似值,總體難度不大。二:說學(xué)生對于五年級學(xué)生而言,已經(jīng)在四年級學(xué)習(xí)了“四舍五入”法,所以在本節(jié)新授教學(xué)中已經(jīng)有了一定的基礎(chǔ)。對于教師的教和學(xué)生的學(xué)都有了一定的促進(jìn)作用。
課程標(biāo)準(zhǔn)中明確指出:“小學(xué)數(shù)學(xué)的教學(xué)內(nèi)容絕大多數(shù)可以聯(lián)系學(xué)生的生活實際,找準(zhǔn)每一節(jié)教材內(nèi)容與學(xué)生生活實際的“切入點”可讓學(xué)生產(chǎn)生一種熟悉感、親切感“,以及“數(shù)學(xué)教學(xué)活動中,教師應(yīng)向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能。”要將這個理念落實在課堂教學(xué)中,就要求教師能根據(jù)教學(xué)的具體內(nèi)容,選擇恰當(dāng)?shù)膶W(xué)習(xí)方式,并巧妙創(chuàng)設(shè)學(xué)生主動探索的機會,變“接受學(xué)習(xí)”為“創(chuàng)造學(xué)習(xí)”,讓學(xué)生在觀察、操作、討論、交流、歸納、整理、概括的過程中學(xué)習(xí)新知,充分以學(xué)生為主體,逐步培養(yǎng)學(xué)生的創(chuàng)新意識,形成初步的探索和解決問題的能力。根據(jù)以上思想,本節(jié)課的設(shè)計我主要從尊重學(xué)生已有的知識經(jīng)驗;在觀察與操作中去親身體驗知識的形成過程,掌握約分的方法。
④聯(lián)系生活實際解決身邊的問題,讓同學(xué)初步感受數(shù)學(xué)與日常生活的密切聯(lián)系,體驗數(shù)學(xué)的應(yīng)用,促進(jìn)學(xué)生的發(fā)展。接下來,我再具體談一談這堂課的教學(xué)過程。3、說教學(xué)過程第一環(huán)節(jié):創(chuàng)設(shè)情境,激qing導(dǎo)入。同學(xué)們你們看屏幕上的是什么?(出示圖片)那么自行車車輪是什么形狀的?為什么車輪要設(shè)計成圓形?這里面有什么奧妙呢?學(xué)了今天的內(nèi)容大家就會明白的。這節(jié)課我們就走進(jìn)圓的世界去探尋其中的奧妙。板書課題:圓的認(rèn)識設(shè)計意圖:通過生活中實際例子引入課題,一方面引起學(xué)生的學(xué)習(xí)興趣,另一方面為學(xué)習(xí)新知識做了鋪墊,從思想上吸引了學(xué)生主動參與學(xué)習(xí)的活動。這一環(huán)節(jié)的設(shè)計,主要是想體現(xiàn)數(shù)學(xué)就在我們的身邊,從而激發(fā)學(xué)生學(xué)習(xí)的興趣及學(xué)習(xí)的積極性。
(一)、情境導(dǎo)入通過播放笑笑和淘氣在文具店購買文具活動的視頻片段,喚起學(xué)生已有的知識和經(jīng)驗,使學(xué)生想到“買東西要使用人民幣”。又因為二年級孩子年齡較小,社會經(jīng)驗不足,上市場、超市購物的機會也少,對人民幣只是初步的認(rèn)識,對于要用到錢才能買到東西這一樸素的等價交換的原則只有初步的意識。所以借此機會激發(fā)學(xué)生想不想和笑笑、淘氣一起到文具店里去購買文具呢?從而引出課題:買文具。(二)、認(rèn)識小面額人民幣學(xué)生在生活中經(jīng)常看到人民幣,有時還使用人民幣,因此我首先讓學(xué)生互相交流:你知道有哪些面值的人民幣?根據(jù)學(xué)生的回答,老師有序地進(jìn)行板書:1角、2角、5甬1元、2元、5元10元、20元、50元100元在這一環(huán)節(jié)中我僅作為引導(dǎo)者,引導(dǎo)學(xué)生相互交流,在師生互動中完成對已有知識經(jīng)驗的歸納與延伸,通過小組合作,互相交流,讓全體學(xué)生參與學(xué)習(xí)過程,在學(xué)習(xí)過程中有意識培養(yǎng)學(xué)生細(xì)心觀察、仔細(xì)傾聽、善于總結(jié)的良好習(xí)慣。
一、教材分析《運白菜》這一課是北師大版三年級上冊第三單元第二節(jié)的內(nèi)容。本節(jié)課的內(nèi)容是萬以內(nèi)數(shù)的連減計算,是第八單元的第二課時,屬于“數(shù)與代數(shù)”領(lǐng)域的內(nèi)容。教材創(chuàng)設(shè)了“運白菜”的情景。教學(xué)時,教師應(yīng)該啟發(fā)學(xué)生根據(jù)圖中的信息提出連減問題,并用不同的方法解決問題,提倡方法的多樣性,并運用學(xué)會的知識正確計算。這樣,使學(xué)生既能體驗到發(fā)現(xiàn)問題的成功,又能切實感受到學(xué)習(xí)計算的必要性。二、學(xué)情分析:學(xué)生在一年級下冊學(xué)習(xí)過“100以內(nèi)數(shù)的連減”,二年級上冊第六單元學(xué)習(xí)過“三位數(shù)的加減及其應(yīng)用”。許多孩子對“連減問題”已有初步的了解,特別是在購物中有很好的經(jīng)驗和體現(xiàn)。用兩種方法解決連減的問題,在一年級的時候就已經(jīng)接觸過,現(xiàn)在學(xué)生可以把兩種方法都掌握,而且還可以通過這樣的方法,檢驗計算的是否準(zhǔn)確,培養(yǎng)學(xué)生靈活思維和認(rèn)真檢驗的好習(xí)慣。但學(xué)生對三位數(shù)加法、減法的計算不夠準(zhǔn)確,運算速度慢,導(dǎo)致在連減計算中,會出現(xiàn)錯誤。
四、說教法、學(xué)法我在教學(xué)中主要采用的教學(xué)方法是先學(xué)后教中的“兩學(xué)兩教”。輔之以多媒體教學(xué)手段(主要通過微課視頻的觀看學(xué)習(xí))。本課學(xué)生的學(xué)習(xí)方法主要有:自主發(fā)現(xiàn)法、合作交流法、自學(xué)嘗試法等。1.學(xué)生在自主探究解答例題,求兩種品牌罐頭的合格率時,主要采用自學(xué)嘗試法,根據(jù)知識的遷移,學(xué)生能夠正確求出產(chǎn)品合格率。2.在總結(jié)小數(shù)、分?jǐn)?shù)化成百分?jǐn)?shù)的方法時,學(xué)生主要采用自主發(fā)現(xiàn),合作交流的方法。首先讓學(xué)生觀察例題板書,想一想怎樣把小數(shù)、分?jǐn)?shù)化成百分?jǐn)?shù),采用了“兵教兵”的方法,達(dá)到了人人參與的目的。當(dāng)然,由于學(xué)生所處的文化環(huán)境,家庭背景和自身思維方式的不同,不同的學(xué)生所采用的方法也不盡相同,作為教師要尊重學(xué)生的選擇,允許學(xué)生用自己喜歡的方式學(xué)習(xí)數(shù)學(xué)。五、說教學(xué)過程
煤的價格為400元/噸,生產(chǎn)1噸甲產(chǎn)品除需原料費用外,還需其他費用400元,甲產(chǎn)品每噸售價4600元;生產(chǎn)1噸乙產(chǎn)品除原料費用外,還需其他費用500元,乙產(chǎn)品每噸售價5500元.現(xiàn)將該礦石原料全部用完,設(shè)生產(chǎn)甲產(chǎn)品x噸,乙產(chǎn)品m噸,公司獲得的總利潤為y元.(1)寫出m與x的關(guān)系式;(2)寫出y與x的函數(shù)關(guān)系式.(不要求寫自變量的取值范圍)解析:(1)因為礦石的總量一定,當(dāng)生產(chǎn)的甲產(chǎn)品的數(shù)量x變化時,那么乙產(chǎn)品的產(chǎn)量m將隨之變化,m和x是動態(tài)變化的兩個量;(2)題目中的等量關(guān)系為總利潤y=甲產(chǎn)品的利潤+乙產(chǎn)品的利潤.解:(1)因為4m+10x=300,所以m=150-5x2.(2)生產(chǎn)1噸甲產(chǎn)品獲利為4600-10×200-4×400-400=600(元);生產(chǎn)1噸乙產(chǎn)品獲利為5500-4×200-8×400-500=1000(元).所以y=600x+1000m.將m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法總結(jié):根據(jù)條件求一次函數(shù)的關(guān)系式時,要找準(zhǔn)題中所給的等量關(guān)系,然后求解.
解:由題意得a+b=0,cd=1,|m|=6,m=±6;∴(1)當(dāng)m=6時,原式=06-1+6=5;(2)當(dāng)m=-6時,原式=0-6-1+6=5.故a+bm-cd+|m|的值為5.方法總結(jié):解答此題的關(guān)鍵是先根據(jù)題意得出a+b=0,cd=1及m=±6,再代入所求代數(shù)式進(jìn)行計算.探究點三:有理數(shù)乘法的應(yīng)用性問題小紅家春天粉刷房間,雇用了5個工人,干了3天完成;用了某種涂料150升,費用為4800元,粉刷的面積是150m2.最后結(jié)算工錢時,有以下幾種方案:方案一:按工算,每個工100元;(1個工人干1天是一個工);方案二:按涂料費用算,涂料費用的30%作為工錢;方案三:按粉刷面積算,每平方米付工錢12元.請你幫小紅家出主意,選擇哪種方案付錢最合算(最省)?解析:根據(jù)有理數(shù)的乘法的意義列式計算.解:第一種方案的工錢為100×3×5=1500(元);第二種方案的工錢為4800×30%=1440(元);第三種方案的工錢為150×12=1800(元).答:選擇方案二付錢最合算(最省).方法總結(jié):解此題的關(guān)鍵是根據(jù)題意列出算式,計算出結(jié)果,比較得出最省的付錢方案.
方法總結(jié):股票每天的漲跌都是在前一天的基礎(chǔ)上進(jìn)行的,不要理解為每天都是在67元的基礎(chǔ)上漲跌.另外熟記運算法則并根據(jù)題意準(zhǔn)確列出算式也是解題的關(guān)鍵.三、板書設(shè)計加法法則(1)同號兩數(shù)相加,取與加數(shù)相同的符號,把絕對 值相加.(2)異號兩數(shù)相加,取絕對值較大加數(shù)的符號,并 用較大的絕對值減去較小的絕對值.(3)互為相反數(shù)的兩數(shù)相加得0.(4)一個數(shù)同0相加,仍得這個數(shù).本課時利用情境教學(xué)、解決問題等方法進(jìn)行教學(xué),使學(xué)生在情境中提出問題,并尋找解決問題的途徑,因此不知不覺地進(jìn)入學(xué)習(xí)氛圍,把學(xué)生從被動學(xué)習(xí)變?yōu)橹鲃酉雽W(xué).在本節(jié)教學(xué)中,要堅持以學(xué)生為主體,教師為主導(dǎo),充分調(diào)動學(xué)生的興趣和積極性,使他們最大限度地參與到課堂的活動中.
探究點三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關(guān)系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減?。鍟O(shè)計1.函數(shù)與圖象之間是一一對應(yīng)的關(guān)系;2.作一個函數(shù)的圖象的一般步驟:列表,描點,連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過原點的直線.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.已知函數(shù)的表達(dá)式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識和能力.理解一次函數(shù)的表達(dá)式與圖象之間的一一對應(yīng)關(guān)系.
(1)請你用代數(shù)式表示水渠的橫斷面面積;(2)計算當(dāng)a=3,b=1時,水渠的橫斷面面積.解析:(1)根據(jù)梯形面積=12(上底+下底)×高,即可用含有a、b的代數(shù)式表示水渠橫斷面面積;(2)把a=3、b=1帶入到(1)中求出的代數(shù)式中,其結(jié)果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當(dāng)a=3,b=1時水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結(jié):解答本題時需搞清下列幾個問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據(jù)公式求圖形的面積需要知道哪幾個量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設(shè)計教學(xué)過程中,應(yīng)通過活動使學(xué)生感知代數(shù)式運算在判斷和推理上的意義,增強學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生積極的情感和態(tài)度,為進(jìn)一步學(xué)習(xí)奠定堅實的基礎(chǔ).
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法總結(jié):如果按照先算乘法,再算加減,則運算較繁瑣,且符號容易出錯,但如果逆用乘法對加法的分配律,則可使運算簡便.探究點三:有理數(shù)乘法的運算律的實際應(yīng)用甲、乙兩地相距480千米,一輛汽車從甲地開往乙地,已經(jīng)行駛了全程的13,再行駛多少千米就可以到達(dá)中點?解析:把兩地間的距離看作單位“1”,中點即全程12處,根據(jù)題意用乘法分別求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到達(dá)中點.方法總結(jié):解答本題的關(guān)鍵是根據(jù)題意列出算式,然后根據(jù)乘法的分配律進(jìn)行簡便計算.新課程理念要求把學(xué)生“學(xué)”數(shù)學(xué)放在教師“教”之前,“導(dǎo)學(xué)”是教學(xué)的重點.因此,在本節(jié)課的教學(xué)中,不要直接將結(jié)論告訴學(xué)生,而是引導(dǎo)學(xué)生從大量的實例中尋找解決問題的規(guī)律.學(xué)生經(jīng)歷積極探索知識的形成過程,最后總結(jié)得出有理數(shù)乘法的運算律.整個教學(xué)過程要讓學(xué)生積極參與,獨立思考和合作探究相結(jié)合,教師適當(dāng)點評,以達(dá)到預(yù)期的教學(xué)效果.
解析:∵ab>0,根據(jù)“兩數(shù)相除,同號得正”可知,a、b同號,又∵a+b<0,∴可以判斷a、b均為負(fù)數(shù).故選D.方法總結(jié):此題考查了有理數(shù)乘法和加法法則,將二者綜合考查是考試中常見的題型,此題的側(cè)重點在于考查學(xué)生的邏輯推理能力.讓學(xué)生深刻理解除法是乘法的逆運算,對學(xué)好本節(jié)內(nèi)容有比較好的作用.教學(xué)設(shè)計可以采用課本的引例作為探究除法法則的過程.讓學(xué)生自己探索并總結(jié)除法法則,同時也讓學(xué)生對比乘法法則和除法法則,加深印象.并講清楚除法的兩種運算方法:(1)在除式的項和數(shù)字不復(fù)雜的情況下直接運用除法法則求解.(2)在多個有理數(shù)進(jìn)行除法運算,或者是乘、除混合運算時應(yīng)該把除法轉(zhuǎn)化為乘法,然后統(tǒng)一用乘法的運算律解決問題.
1.掌握有理數(shù)混合運算的順序,并能熟練地進(jìn)行有理數(shù)加、減、乘、除、乘方的混合運算.2.在運算過程中能合理地應(yīng)用運算律簡化運算.一、情境導(dǎo)入在學(xué)完有理數(shù)的混合運算后,老師為了檢驗同學(xué)們的學(xué)習(xí)效果,出了下面這道題:計算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計算正確嗎?二、合作探究探究點一:有理數(shù)的混合運算計算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運算,運算時,一定要注意運算順序,尤其是本題中的乘除運算.要從左到右進(jìn)行計算;(2)題有大括號、中括號,在運算時,可從里到外進(jìn)行.注意要靈活掌握運算順序.
1.能從統(tǒng)計圖中獲取信息,并求出相關(guān)數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);(重點)2.理解并分析平均數(shù)、中位數(shù)、眾數(shù)所體現(xiàn)的集中趨勢.(難點)一、情境導(dǎo)入某次射擊比賽,甲隊員的成績?nèi)缦拢?1)根據(jù)統(tǒng)計圖,確定10次射擊成績的眾數(shù)、中位數(shù),說說你的做法,并與同伴交流.(2)先估計這10次射擊成績的平均數(shù),再具體算一算,看看你的估計水平如何.二、合作探究探究點一:從折線統(tǒng)計圖分析數(shù)據(jù)的集中趨勢廣州市努力改善空氣質(zhì)量,近年空氣質(zhì)量明顯好轉(zhuǎn),根據(jù)廣州市環(huán)境保護(hù)局公布的2006~2010年這五年各年的全年空氣質(zhì)量優(yōu)良的天數(shù),繪制成折線圖如圖所示.根據(jù)圖中信息回答:(1)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的中位數(shù)是________;(2)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)與它前一年相比較,增加最多的是________年(填寫年份);(3)求這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的平均數(shù).解析:(1)由圖知,把這五年的全年空氣質(zhì)量優(yōu)良天數(shù)按照從小到大的順序排列為:333,334,345,347,357,所以中位數(shù)是345;
方法總結(jié):要認(rèn)真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達(dá)式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設(shè)計一次函數(shù)的應(yīng)用單個一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進(jìn),逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個體差異,使每個學(xué)生都學(xué)有所獲.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標(biāo),即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標(biāo).三、板書設(shè)計兩個一次函數(shù)的應(yīng)用實際生活中的問題幾何問題進(jìn)一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進(jìn)一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.
解:設(shè)正比例函數(shù)的表達(dá)式為y1=k1x,一次函數(shù)的表達(dá)式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達(dá)式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達(dá)式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負(fù)半軸上,∴B點的坐標(biāo)為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達(dá)式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達(dá)式的方法:從圖象上選取兩個已知點的坐標(biāo),然后運用待定系數(shù)法將兩點的橫、縱坐標(biāo)代入所設(shè)表達(dá)式中求出待定系數(shù),從而求出函數(shù)的表達(dá)式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達(dá)式某商店售貨時,在進(jìn)價的基礎(chǔ)上加一定利潤,其數(shù)量x與售價y的關(guān)系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時的售價.