1. (業(yè)主名字)(下簡稱“業(yè)主”)已安排了一筆以多種貨幣構成的資金,用于 (工程名稱)建設費用的合理支付。所有如資格預審文件規(guī)定的來自合格貨源并經資格預審合格了的投標人均可參加本工程的投標。2.業(yè)主邀請資格預審合格的投標人就下列工程施工和竣工所需的勞務、材料、設備和服務進行密封投標: (工程概況、主要項目及工程量等)。3.凡有興趣的資格預審合格的投標人,可從下列地址獲取進一步的信息及查閱招文件: (查詢和發(fā)售招標文件的機構名稱、地址等)。4.任何有興趣的資格預審合格的投標人在向上述機構提交書面申請并在交納了一筆不可退還的費用 (貨幣名稱和數量)后可購得一套完整的招標文件。多購的招標文件收費相同。
我們十分高興地邀請貴公司為 (工程監(jiān)理服務的名稱)提交個體的服務建議書。業(yè)主已安排了一筆以多種貨幣構成的資金,用于 (工程名稱)有關費用的合理支付。工程概述包括工程名稱、地點、招標方式、時間安排等。本工程的施了計劃于 年 用外始??偣て诠烙? 個月。本工程的主要項目有:項目名稱、主要項目、初步工程量等。為了有效獎施監(jiān)理,業(yè)主將聘請合格的、有經驗的顧問/監(jiān)理公司幫助業(yè)主進行本工程施工階級的合同管理。要求的服務內容見第四章附錄A:監(jiān)理服務范圍。
在 (工程名稱)施工期間,監(jiān)理工程師將負責按施工合同進行施工監(jiān)理,包括工程質量控制、進度控制和投資控制、安全等行政管理,處理與施工合同有關的一切事務,為工程按時,高質量完成提供優(yōu)質服務。3服務的期限監(jiān)理服務的期限自本合同生效之日起,至工程項目的保修期結束時止。非監(jiān)理服務原因造成的延期,業(yè)主按附加服務向監(jiān)理工程師支付報酬。4正常服務(1)制備監(jiān)理所需的準則、核對單、表格和證書等。(2)建立監(jiān)理程序和行政管理系統(tǒng)。(3)參與編制施工招標文件、編制標底,協(xié)助評標與合同談判。(4)審查施工圖紙及施工圖預算,參與技術交底和施工圖會審。(5)協(xié)助業(yè)主做好開工前的一切準備工作。(6)實施監(jiān)理確保監(jiān)理組織能有效地和順利地進行監(jiān)理包括:a批準承包商委派的管理、骨干人員施工計劃與材料來源;b合理安排出圖及時頒布施工圖紙;
鑒于 (投標人名稱)已于 (日期)提交了建設 (合同名稱)的投標書(以下稱投標書)。根據本文件,茲宣布,我行 (以下稱銀行)向業(yè)主立約擔保支付 的保證金。本保證書對銀行及其繼承人和受讓人均有約束力。蓋章: 年 月 日本保證義務的條件是:(a)如果投標人在投標書中規(guī)定的投標書有效期內撤回投標書;或(b)如果投標人在投標書有效期內接到業(yè)主所發(fā)的中標通知書后;(1)未能或拒絕根據投標須知的規(guī)定,按要求簽署合同協(xié)議書;或(2)未能或拒絕接投標須知的規(guī)定,提供法的保證金。
第一條 征用土地數量及方位甲方征用乙方土地共____畝,其中稻田____畝,水塘____畝,菜地____畝,坡地____畝,宅基地____畝,林木____畝,共有樹木____株。所征土地東起____,南起____,西起____,北起____.第二條 征用土地的各類補償費和安置補助費1.根據 省(或自治區(qū)、直轄市)政府關于征用土地的補償規(guī)定,各類耕地(包括菜地)按該地年產值的倍(一般為該耕地年產值的三至六倍)補償。征用無收益的土地,不予補償。(征用園地、魚塘、藕塘、葦塘、宅基地、林地、牧場草原等的補償標準,按省、自治區(qū)、直轄市政府制定的辦法執(zhí)行;征用城市郊區(qū)的菜地,還應按當地政府的有關規(guī)定,向國家繳納新菜地開發(fā)基金。)2.根據 ?。ɑ蜃灾螀^(qū)、直轄市)政府的規(guī)定,所征土地上的青苗按該地年產值的____%補償,所征土地上的水井、林木、水塘等附著物按____辦法補償。房屋的補償辦法另訂拆遷合同。乙方人員在開始協(xié)商征地方案以后搶種的作物、樹木和搶建的設施,甲方一律不予補償。
本節(jié)課選自《普通高中課程標準實驗教科書數學必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內容是由兩角差的余弦公式的推導,運用誘導公式、同角三角函數的基本關系和代數變形,得到其它的和差角公式。讓學生感受數形結合及轉化的思想方法。發(fā)展學生數學直觀、數學抽象、邏輯推理、數學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.了解兩角差的余弦公式的推導過程.2.掌握由兩角差的余弦公式推導出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數圖像與性質的探究,培養(yǎng)學生數形結合和類比的思想方法。 a.數學抽象:公式的推導;b.邏輯推理:公式之間的聯(lián)系;c.數學運算:運用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導;e.數學建模:公式的靈活運用;
本節(jié)內容是三角恒等變形的基礎,是正弦線、余弦線和誘導公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內容,對于三角變換、三角恒等式的證明和三角函數式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標1、能夠推導出兩角和與差的正弦、余弦、正切公式并能應用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關的化簡、求值、證明問題.數學學科素養(yǎng)1.數學抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數式的化簡、證明等問題;3.數學運算:運用公式解決基本三角函數式求值問題.4.數學建模:學生體會到一般與特殊,換元等數學思想在三角恒等變換中的作用。.
一、情境導學我國著名數學家吳文俊先生在《數學教育現代化問題》中指出:“數學研究數量關系與空間形式,簡單講就是形與數,歐幾里得幾何體系的特點是排除了數量關系,對于研究空間形式,你要真正的‘騰飛’,不通過數量關系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學幾何的“騰飛”是“數量化”,也就是坐標系的引入,使得幾何問題“代數化”,為了使得空間幾何“代數化”,我們引入了坐標及其運算.二、探究新知一、空間直角坐標系與坐標表示1.空間直角坐標系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數軸:x軸、y軸、z軸,它們都叫做坐標軸.這時我們就建立了一個空間直角坐標系Oxyz,O叫做原點,i,j,k都叫做坐標向量,通過每兩個坐標軸的平面叫做坐標平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
1.從監(jiān)測的范圍、速度,人力和財力的投入等方面看,遙感具有哪些特點?點撥:范圍更廣、速度更快、需要人力更少 、財力投入少。2.有人說:遙感是人的視力的延伸。你同意這種看法嗎?點撥:同意??梢詮倪b感的定義分析。從某種意義上說,人們“看”的過程就是在遙感,眼睛相當于傳感器。課堂小結:遙感技術是國土整治和區(qū)域發(fā)展研究中應用較廣的技術 手段之一,我國在這個領域已經走在了世界的前列。我國的大部分土地已經獲得了大比例尺的航空影像資料,成功發(fā)射了回收式國土資源衛(wèi)星,自行研制發(fā)射了“風云”衛(wèi)星。遙感技術為我國自然資源開發(fā)與利用提供 了大量的有用的資料,在我國農業(yè)估產、災害監(jiān)測 、礦產勘察、土地利用、環(huán)境管理與城鄉(xiāng)規(guī)劃中起到了非常重要的作用。板書設計§1.2地理信息技術在區(qū)域地理環(huán)境研究中的應用
(4)假如你是110指揮中心的調度員,描述在接到報警電話到指揮警車前往出事地點的工作程序。點撥:接警→確認出事地點的位置→(在顯示各巡警車的地理信息系統(tǒng)中)了解其周圍巡警車的位置→分析確定最近(或能最快到達)的巡警車→通知該巡警車。(5)由此例推想,地理信息技術還可以應用于城市管理的哪些部門中?點撥:城市交通組織和管理、商業(yè)組織和管理、城市規(guī)劃、衛(wèi)生救護、物流等部門,都可利用地理信息技術?!菊n堂小結】現代地理學中,3S技術學科的發(fā)展與應用,日益成為地理學前沿科學研究的重要領域,并成為地理學服務于社會生產的主要途徑,現在3S技術已經廣泛應用于社會的各個領域。它們三者既有分工又有聯(lián)系。遙感技術主要用于地理信息數據的獲取,全球定位系統(tǒng)主要用于地理信息的空間定位,地理信息系統(tǒng)主要用來對地理信息數據的管理、更新、分析等。
(一)說教材 《虞美人》選自高中語文統(tǒng)編版必修上冊·古詩詞誦讀?!队菝廊恕肥窃~中的代表作品,是李煜生命中最為重要的一首詞作,極具藝術魅力,對于陶冶學生的情操,豐富和積淀學生的人文素養(yǎng)意義非凡。(二)說學情總體來說,所教班級的學生基礎不強,學習意識略有偏差,在學習過程中需要教師深入淺出,不斷創(chuàng)造動口、動手、動腦的機會,他們才能更好地達成教學目標。(三)說教學目標根據教學內容和學情分析,確定如下教學目標(1)探究這首詞的內涵,了解李煜及其創(chuàng)作風格。(2)通過對本詞的品析,提高詞的鑒賞能力。(3)通過對比閱讀,體會李煜詞 “赤子之心” 、“以血書者”的特色,體味其深沉的亡國之恨和故國之思。
教學重點:1.比較分析地理環(huán)境差異對區(qū)域發(fā)展的影響2.分析區(qū)域不同發(fā)展階段地理環(huán)境的影響教學難點:1.區(qū)域的特征2.以兩個區(qū)域為例,比較分析地理環(huán)境差異對區(qū)域發(fā)展的影響教具準備:有關掛圖等、自制圖表等教學方法:比較法、案例分析法、圖示法等教學過程:一、區(qū)域1.概念:區(qū)域是地球表面的空間單位,它是人們在地理差異的基礎上,按一定的指標和方法劃分出來的。2.特征:(1)區(qū)域具有一定的區(qū)位特征:不同的區(qū)域,自然環(huán)境有差異,人類活動也有差異。同一區(qū)域,區(qū)域內部的特定性質相對一致,如濕潤區(qū)的多年平均降水量都在800毫米以上。但自然環(huán)境對人類活動的影響隨著其他條件的變化而不同。(2)具有一定的面積、形狀和邊界。①有的區(qū)域的邊界是明 確的,如行政區(qū);②有的區(qū)域的邊界具有過渡性質,如干濕地區(qū)。
1.探究:根據基本事實的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個平面,由此可以想到,如果一個平面內有兩條相交或平行直線都與另一個平面平行,是否就能使這兩個平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個平面內有兩條平行直線與另一個平面平行,這兩個平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個平面內有兩條相交直線與另一個平面平行,這兩個平面是平行的,如圖,平面ABCD內兩條相交直線A’C’,B’D’平行。
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內,∴BC⊥平面PAC又PC在平面PAC內,∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細繩緊貼墻面,工人師傅被認為墻面垂直于地面,否則他就認為墻面不垂直于地面,這種方法說明了什么道理?
1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側畫法觀察:矩形窗戶在陽光照射下留在地面上的影子是什么形狀?眺望遠處成塊的農田,矩形的農田在我們眼里又是什么形狀呢?3. 給出斜二測具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時,把他們畫成對應的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長度不變,平行于Y軸的線段,在直觀圖中長度為原來一半。4.對斜二測方法進行舉例:對于平面多邊形,我們常用斜二測畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測畫法(1)建兩個坐標系,注意斜坐標系夾角為45°或135°;(2)與坐標軸平行或重合的線段保持平行或重合;(3)水平線段等長,豎直線段減半;(4)整理.簡言之:“橫不變,豎減半,平行、重合不改變?!?/p>
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號語言:任意a?α,都有l(wèi)⊥a?l⊥α.
6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F分別是AB,CD的中點.若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點O,連接OE,OF,如圖?!逧,F分別是AB,CD的中點,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當∠EOF=60°時,EF=OE=OF=1,當∠EOF=120°時,取EF的中點M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉化為空間某一個平面內點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
新知講授(一)——隨機試驗 我們把對隨機現象的實現和對它的觀察稱為隨機試驗,簡稱試驗,常用字母E表示。我們通常研究以下特點的隨機試驗:(1)試驗可以在相同條件下重復進行;(2)試驗的所有可能結果是明確可知的,并且不止一個;(3)每次試驗總是恰好出現這些可能結果中的一個,但事先不確定出現哪個結果。新知講授(二)——樣本空間思考一:體育彩票搖獎時,將10個質地和大小完全相同、分別標號0,1,2,...,9的球放入搖獎器中,經過充分攪拌后搖出一個球,觀察這個球的號碼。這個隨機試驗共有多少個可能結果?如何表示這些結果?根據球的號碼,共有10種可能結果。如果用m表示“搖出的球的號碼為m”這一結果,那么所有可能結果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機試驗E的每個可能的基本結果稱為樣本點,全體樣本點的集合稱為試驗E的樣本空間。