在入情入境中誦讀成韻 1.配樂范讀,想象畫面: (1)學(xué)生邊看插圖邊聽老師配樂朗讀,想象詩中所描繪的畫面。 ?。?)學(xué)生自由交流想象中的畫面,老師激勵小結(jié)。 預(yù)設(shè):山坡上的小草發(fā)芽了,嫩綠嫩綠的。黃鶯在空中飛來飛去。河堤旁的柳條發(fā)芽了,幾個下朋友放學(xué)回來,趁著東風(fēng),趕忙放起了風(fēng)箏…… 2.借助插圖,啟發(fā)想象:黃鶯一邊飛一邊干什么?(嘰嘰喳喳地叫)它好像在說什么? 再次啟發(fā)想象:春風(fēng)輕輕地吹來,柳條會怎樣呢?(輕輕擺動,好像在跳舞陶醉在了美麗的春色里……) 詩人高鼎看到這樣的景致寫下了這樣的詩句:出示“草長鶯飛二月天,拂堤楊柳醉春煙”。(學(xué)生齊讀) 讓我們想象著春天的美麗景色,有滋有味地誦讀。學(xué)生練讀、指名讀、引讀。 3.聯(lián)系生活,換位體驗,:在這樣美妙的春光里,沐浴著和煦的春風(fēng),(出示兒童放紙鳶圖片)孩子們放起風(fēng)箏,你們放過風(fēng)箏嗎?你放風(fēng)箏時是怎樣的心情?(學(xué)生自由發(fā)言)
操作過程:(1)做這個游戲可以根據(jù)不同的內(nèi)容采用不同的形式。開火車可以橫著開,也可以豎著開,還可以開雙軌列車。(2)導(dǎo)語:小朋友,我們一起來開小火車,看哪一列火車最先開到我們首都北京。開火車時,其他孩子學(xué)著很輕很輕地發(fā)火車開動的“嗚——咔嚓、咔嚓” 的聲音,有利于營造氣氛,激發(fā)學(xué)生的學(xué)習(xí)興趣。(3)例,教師在復(fù)習(xí)學(xué)過的生字時,可以用卡片先出示一個生字,然后讓一組學(xué)生輪著讀生字字音、組詞師:“請第一組開雙軌列車,先讀讀字音,再給它找個朋友?!?誰說錯了,火車就停下。師:“哪個修理員來幫著修理一下?” 選其他組的修理員修理(重讀字音、字母),修理好了繼續(xù)開。第二種游戲名稱:找朋友適用范圍:復(fù)習(xí)字的偏旁、結(jié)構(gòu),正反義詞,以及聲母與韻母的相拼。 游戲準(zhǔn)備:有生字的金牌,花形卡片 操作過程:(1)導(dǎo)語:小朋友,你想找到你的好朋友嗎?讓我們來做一個找朋友的游戲。(2)如,第一冊《識字4》,在學(xué)了生字后,請學(xué)生找相同偏旁的字做你的好朋友,就可以這樣操作。一生拿一張卡片“打”,說:“找呀找,找呀找,誰是我的好朋友?” 拿卡片“拔”和“拍”的同學(xué)就都可以上前說:“我是你的好朋友?!?大家說:“對對對,‘拔’是‘打’的好朋友?!弊詈蟠蠹乙黄鹱x讀兩位好朋友手中的字,說說這兩個字的偏旁。又如,教師可以做幾個金牌,金牌上貼有生字“跑”“跳”,大家一起拍手說:“找呀找,找呀找,找到一個好朋友?!?掛金牌的同學(xué)看一看讀一讀生字,與掛有相同偏旁字的小朋友手拉手,成為好朋友。找對了,大家說:“對對對,你們是一對好朋友。” 找錯了,大家說:“錯錯錯,趕快再去找一找?!?(3)教師也可以準(zhǔn)備一些聲母或韻母相同的生字,用金牌的形式掛在大家胸口,先讀一讀,然后讓小朋友選擇字音中相同部分的字手拉手,交朋友。還可以教師準(zhǔn)備字型結(jié)構(gòu)相同的或能組成詞語的兩個生字,準(zhǔn)備一些聲母和韻母,讓學(xué)生讀后手拉手交朋友。(4)這樣在游戲中能激發(fā)學(xué)生的學(xué)習(xí)興趣,在游戲中鞏固所學(xué)知識。
二、為了保證學(xué)生能夠全員上課,上課點名查學(xué)生到課情況,上課中間會不定時點名提問,結(jié)束時還會再次查到課情況,盡管反復(fù)強調(diào)課堂紀(jì)律,但總有部分學(xué)生不能按時上課,還有1—2個學(xué)生甚至不上課。 三、課后會利用釘釘家校本給學(xué)生布置幾個填空題或完成課堂筆記,鞏固所學(xué)知識。為了保證作業(yè)能夠按時完成,每天利用釘釘?shù)募倚1镜奶嵝鸭议L功能多次提醒家長督促孩子完成作業(yè),但完成情況不盡如人意,就昨天的作業(yè)檢查情況來看,118班40人,完成36人。116班36人,完成32人。
三、科學(xué)育人抓質(zhì)量不是只抓課本知識,而是要從抓習(xí)慣、抓細(xì)節(jié)、抓學(xué)困生、抓讀書等方面入手。抓質(zhì)量要從培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣入手,良好習(xí)慣的培養(yǎng),只靠班主任一人是心有余而力不足的,需要每一位教師齊心協(xié)力,齊抓共管。抓質(zhì)量要注重細(xì)節(jié),如語文要從生字、背誦開始夯實基礎(chǔ),數(shù)學(xué)要從基本計算、每一個小知識點、讀題審題點滴落實。抓好每個細(xì)節(jié),進(jìn)而形成習(xí)慣,學(xué)生的成績自然就會提高。抓質(zhì)量要把目光投向?qū)W困生,如課堂上設(shè)計一些學(xué)困生能夠回答上來的問題并及時表揚他們,不斷增強自信,課后適當(dāng)開“小灶”,加強指導(dǎo),還要跟蹤輔導(dǎo),持續(xù)關(guān)注,增強他們的學(xué)習(xí)主動性和積極性,成績也會有提高。抓質(zhì)量還要抓讀書,要培養(yǎng)學(xué)生的讀書興趣,讓讀書成為學(xué)生的生活方式,不僅課上讀,還要在課外讀,不僅讓學(xué)生讀,教師自己更要讀。
問題1. 用一個大寫的英文字母或一個阿拉伯?dāng)?shù)字給教室里的一個座位編號,總共能編出多少種不同的號碼?因為英文字母共有26個,阿拉伯?dāng)?shù)字共有10個,所以總共可以編出26+10=36種不同的號碼.問題2.你能說說這個問題的特征嗎?上述計數(shù)過程的基本環(huán)節(jié)是:(1)確定分類標(biāo)準(zhǔn),根據(jù)問題條件分為字母號碼和數(shù)字號碼兩類;(2)分別計算各類號碼的個數(shù);(3)各類號碼的個數(shù)相加,得出所有號碼的個數(shù).你能舉出一些生活中類似的例子嗎?一般地,有如下分類加法計數(shù)原理:完成一件事,有兩類辦法. 在第1類辦法中有m種不同的方法,在第2類方法中有n種不同的方法,則完成這件事共有:N= m+n種不同的方法.二、典例解析例1.在填寫高考志愿時,一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強項專業(yè),如表,
當(dāng)A,C顏色相同時,先染P有4種方法,再染A,C有3種方法,然后染B有2種方法,最后染D也有2種方法.根據(jù)分步乘法計數(shù)原理知,共有4×3×2×2=48(種)方法;當(dāng)A,C顏色不相同時,先染P有4種方法,再染A有3種方法,然后染C有2種方法,最后染B,D都有1種方法.根據(jù)分步乘法計數(shù)原理知,共有4×3×2×1×1=24(種)方法.綜上,共有48+24=72(種)方法.故選B.答案:B5.某藝術(shù)小組有9人,每人至少會鋼琴和小號中的一種樂器,其中7人會鋼琴,3人會小號,從中選出會鋼琴與會小號的各1人,有多少種不同的選法?解:由題意可知,在藝術(shù)小組9人中,有且僅有1人既會鋼琴又會小號(把該人記為甲),只會鋼琴的有6人,只會小號的有2人.把從中選出會鋼琴與會小號各1人的方法分為兩類.第1類,甲入選,另1人只需從其他8人中任選1人,故這類選法共8種;第2類,甲不入選,則會鋼琴的只能從6個只會鋼琴的人中選出,有6種不同的選法,會小號的也只能從只會小號的2人中選出,有2種不同的選法,所以這類選法共有6×2=12(種).因此共有8+12=20(種)不同的選法.
提問:1.怎樣判斷兩種相關(guān)聯(lián)的量是否成正比例?用字母怎樣表示正比例關(guān)系? 2.判斷下面兩種量是否成正比例?為什么? (1)時間一定,行駛的路程和速度 (2)除數(shù)一定,被除數(shù)和商 3.單價、數(shù)量和總價之間有怎樣的關(guān)系?在什么條件下,兩種量成正比例? 4.導(dǎo)入新課: 如果總價一定,單價和數(shù)量的變化有什么規(guī)律?這兩種量存在什么關(guān)系?今天,我們就來研究這種變化規(guī)律。
1、通過同位之間互說座位位置,檢測知識目標(biāo)2、3的達(dá)成效果。2、通過導(dǎo)學(xué)案上的探究一,檢測知識目標(biāo)2、3的達(dá)成效果。 3、通過探究二,檢測知識目標(biāo)1、3的達(dá)成效果。 4、通過課堂反饋,檢測總體教學(xué)目標(biāo)的達(dá)成效果。本節(jié)課遵循分層施教的原則,以適應(yīng)不同學(xué)生的發(fā)展與提高,針對學(xué)生回答問題本著多鼓勵、少批評的原則,具體從以下幾方面進(jìn)行評價:1、通過學(xué)生獨立思考、參與小組交流和班級集體展示,教師課堂觀察學(xué)生的表現(xiàn),了解學(xué)生對知識的理解和掌握情況。教師進(jìn)行適時的反應(yīng)評價,同時促進(jìn)學(xué)生的自評與互評。2、通過設(shè)計課堂互說座位、探究一、二及達(dá)標(biāo)檢測題,檢測學(xué)習(xí)目標(biāo)達(dá)成情況,同時有利于學(xué)生完成對自己的評價。3.通過課后作業(yè),了解學(xué)生對本課時知識的掌握情況,同時又能檢測學(xué)生分析解決問題的方法和思路,完成教學(xué)反饋評價。
2重點難點教學(xué)重點了解我國古代建筑的外觀造型、建筑結(jié)構(gòu)、群體布局、裝飾色彩。教學(xué)難點對我國古代建筑的欣賞感受能力,能夠從外觀、結(jié)構(gòu)、布局、裝飾、類別來欣賞祖國古代的建筑藝術(shù)。3教學(xué)過程3.1 第一學(xué)時教學(xué)活動活動1【導(dǎo)入】觀察建筑,點出建筑(設(shè)計意圖:了解建筑的基本特點)1、同學(xué)們,我們坐在什么地方?(教室)2、讓我們來觀察一下,它都有哪些部分組成?(墻壁、天花板、地面、門窗)3、還有什么地方有這些特點?(電影院、家… …)4、 [課件1:現(xiàn)代建筑]這些都叫做“建筑”。(板書)
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學(xué)生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學(xué)生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10
一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時我們就建立了一個空間直角坐標(biāo)系Oxyz,O叫做原點,i,j,k都叫做坐標(biāo)向量,通過每兩個坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標(biāo)是坐標(biāo)原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點;當(dāng)Δ=0時,直線與拋物線相切,有一個切點;當(dāng)Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準(zhǔn)線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個角度去認(rèn)識拋物線.教材在拋物線的定義這個內(nèi)容的安排上是:先從直觀上認(rèn)識拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個“圓錐曲線方程”一章,是學(xué)生應(yīng)重點掌握的基本數(shù)學(xué)方法 運動變化和對立統(tǒng)一的思想觀點在這節(jié)知識中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標(biāo)易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
∵在△EFP中,|EF|=2c,EF上的高為點P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點坐標(biāo)為(5,4).由兩點間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個焦點的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點與兩焦點的距離之差的絕對值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點為焦點,且經(jīng)過點(3,√10);(3)a=b,經(jīng)過點(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點在x軸上時,可設(shè)雙曲線方程為x2-y2=a2,將點(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點在y軸上時,可設(shè)雙曲線方程為y2-x2=a2,將點(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.