方程有兩個不相等的實數根.綜上所述,m=3.易錯提醒:本題由根與系數的關系求出字母m的值,但一定要代入判別式驗算,字母m的取值必須使判別式大于0,這一點很容易被忽略.三、板書設計一元二次方程的根與系數的關系關系:如果方程ax2+bx+c=0(a≠0) 有兩個實數根x1,x2,那么x1+x2 =-ba,x1x2=ca應用利用根與系數的關系求代數式的值已知方程一根,利用根與系數的關系求方程的另一根判別式及根與系數的關系的綜合應用讓學生經歷探索,嘗試發(fā)現韋達定理,感受不完全的歸納驗證以及演繹證明.通過觀察、實踐、討論等活動,經歷發(fā)現問題、發(fā)現關系的過程,養(yǎng)成獨立思考的習慣,培養(yǎng)學生觀察、分析和綜合判斷的能力,激發(fā)學生發(fā)現規(guī)律的積極性,激勵學生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴謹的治學精神.
首先列表,利用未知數的取值,根據一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數,a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數學活動的經驗,提高探究、發(fā)現和創(chuàng)新的能力.
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應用已知a,b,c分別是△ABC的三邊長,當m>0時,關于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數根,請判斷△ABC的形狀.解析:先將方程轉化為一般形式,再根據根的判別式確定a,b,c之間的關系,即可判定△ABC的形狀.解:將原方程轉化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據一元二次方程根的情況,利用判別式得到關于一元二次方程系數的等式或不等式,再結合其他條件解題.
2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關于 方程 為已知常數, ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現的現象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數和。(4)求一元二次方程,使它的兩個根是 。【歸納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內劃“√”,不是一元二次方程的,在括號內劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數項是__________.2.如果方程ax2+5=(x+2)(x-1)是關于x的一元二次方程,則a__________.3.關于x的方程(m-4)x2+(m+4)x+2m+3=0,當m__________時,是一元二次方程,當m__________時,是一元一次方程。四、學習體會:五、課后作業(yè)
方法總結:要認真觀察圖象,結合題意,弄清各點所表示的意義.探究點二:一次函數與一元一次方程一次函數y=kx+b(k,b為常數,且k≠0)的圖象如圖所示,根據圖象信息可求得關于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數經過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結:此題主要考查了一次函數與一元一次方程的關系,關鍵是正確利用待定系數法求出一次函數的關系式.三、板書設計一次函數的應用單個一次函數圖象的應用一次函數與一元一次方程的關系探究的過程由淺入深,并利用了豐富的實際情景,增加了學生的學習興趣.教學中要注意層層遞進,逐步讓學生掌握求一次函數與一元一次方程的關系.教學中還應注意尊重學生的個體差異,使每個學生都學有所獲.
四個不同類型的問題由淺入深,學生能從不同角度掌握求一次函數的方法.對于問題4,教師可引導學生分析,并教學生要學會畫圖,利用圖象分析問題,體會數形結合方法的重要性.學生若出現解題格式不規(guī)范的情況,教師應糾正并給予示范,訓練學生規(guī)范答題的習慣.第五環(huán)節(jié)課時小結內容:總結本課知識與方法1.本節(jié)課主要學習了怎樣確定一次函數的表達式,在確定一次函數的表達式時可以用待定系數法,即先設出解析式,再根據題目條件(根據圖象、表格或具體問題)求出 , 的值,從而確定函數解析式。其步驟如下:(1)設函數表達式;(2)根據已知條件列出有關k,b的方程;(3)解方程,求k,b;4.把k,b代回表達式中,寫出表達式.2.本節(jié)課用到的主要的數學思想方法:數形結合、方程的思想.目的:引導學生小結本課的知識及數學方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習題4.5:1,2,3,4目的:進一步鞏固當天所學知識。教師也可根據學生情況適當增減,但難度不應過大.
第三環(huán)節(jié):課堂小結活動內容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應該注意的是什么?關鍵是什么?3. 通過今天的學習,你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學生說出自己的心得體會及疑問.活動意圖:引導學生自己小結本節(jié)課的知識要點及數學方法,使知識系統(tǒng)化.說明:還可以建議有條件的學生去讀一讀《孫子算經》,可以在網上查,找出自己喜歡的問題,互相出題;同位的同學還可互相編題考察對方;還可以設置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學生的學習興趣和信心。
解:設需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結:列方程最重要的是審題,只有理解題意,才能恰當地設出未知數,準確地找出已知量和未知量之間的等量關系,正確地列出方程.在列出方程后,還應根據實際需求,注明自變量的取值范圍.三、板書設計一元二次方程概念:只含有一個未知數x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數,a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為?! ?數,a≠0),其中ax2,bx,c 分別稱為二次項、一次項和 常數項,a,b分別稱為二次 項系數和一次項系數本課通過豐富的實例,讓學生觀察、歸納出一元二次方程的有關概念,并從中體會方程的模型思想.通過本節(jié)課的學習,應該讓學生進一步體會一元二次方程也是刻畫現實世界的一個有效數學模型,初步培養(yǎng)學生的數學來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學生學習數學的興趣.
(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據一元二次方程根的情況,利用判別式得到關于一元二次方程系數的等式或不等式,再結合其他條件解題.三、板書設計用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經歷從用配方法解數字系數的一元二次方程到解字母系數的一元二次方程,探索求根公式,發(fā)展學生合情合理的推理能力,并認識到配方法是理解求根公式的基礎.通過對求根公式的推導,認識到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會數式通性,感受數學的嚴謹性和數學結論的確定性.提高學生的運算能力,并養(yǎng)成良好的運算習慣.
3、一般地,對于關于 方程 為已知常數, ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現的現象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數和。(4)求一元二次方程,使它的兩個根是 。【歸納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結:解決此類問題的關鍵是先進行數學建模,將實際問題中的條件轉化為數學問題中的條件.常有兩個步驟:(1)根據題意得出二次函數的關系式,將實際問題轉化為純數學問題;(2)應用有關函數的性質作答.
(三)學以致用,鞏固新知為鞏固本節(jié)的教學重點我再次給出三道問題: 1)絕對值是7的數有幾個?各是什么?有沒有絕對值是-2的數?2)絕對值是0的數有幾個?各是什么? 3)絕對值小于3的整數一共有多少個?先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。(四)總結歸納,知識升華小結時我也將充分發(fā)揮學生學習的主動性,發(fā)揮教師在教學的啟發(fā)引導作用,和學生一起合作把本節(jié)課所學的內容做一個小結。(五)布置作業(yè),拓展新知布置作業(yè)不是目的,目的是使學生能夠更好地掌握并運用本節(jié)課的內容。所以我會布置這樣一個作業(yè):請學生回家在父母的幫助下,找出南方和北方各三個城市的溫度,并比較這些溫度的大小,并寫出每個溫度的絕對值進行比較
劉義慶(403~444)南朝宋著名文學家,字季伯,彭城(今江蘇徐州)人,南朝宋宗室,武帝時襲封臨川王。官至兗州刺史、都督加開府儀同三司。自幼才華出眾,愛好文學,喜納文士,其撰筆記小說集《世說新語》,是六朝志人小說的代表。記敘漢末至東晉士族階層人物的言談軼事,生動形象地反映出當時士族的生活方式與精神面貌。語言精煉、生動傳神,對后世小說影響極大。其中“周處除三害”、“望梅止渴”、“擊鼓罵曹”等故事,成為后世戲曲小說的素材,“新亭對泣”、“子猷獻戴”等也成為后世詩文常用的典故。梁劉孝標作注,旁征博引,為后人所重。另有《幽明錄》,今佚。魯迅《古小說鉤沉》輯其佚文200余條,皆記詭異之事。
一、教材分析義務教育課程標準實驗教科書數學(人教版)一年級上冊第五單元,把8和9的認識放在同一節(jié)課中完成,編排與前面6和7的認識基本上一樣,只是要求更高。教材中提供給學生數數的資源雖不如6和7明顯,卻更豐富。提供給學生數數的對象是以“熱愛自然,保護環(huán)境”為主題的生動畫面,其內容有人、花、樹、花盆、蝴蝶、黑板上的字等。畫面除數數外,還體現了環(huán)保教育的主題。8和9的序數意義仍是采取6和7的編排方法,不同的是讓學生更具體地感受幾和第幾的意義的不同。基于以上分析,確定了以下教學目標:1.體會8和9的基數的含義。 2.了解8和9在自然數中的排列順序,會比較0~9各數的大小,知道8和9的序數含義。 3.培養(yǎng)學生初步的收集信息、處理信息的能力。 4.結合8和9的學習,向學生滲透環(huán)保教育和勞動教育。 教學重點、難點:學會比較0—9各數的大小。
一、說教材1.教學內容:義務教育課程標準實驗教科書人教版小學數學一年級上冊57頁及相關的練習題。2.教材的地位和作用:這節(jié)課是人教版小學數學一年級上冊第五單元第57頁的內容,是在學了6、7加減法中的用數學:金色的秋天后進行教學的。大家知道,新教材中的“用數學”,類似于老教材中的應用題。通過“用數學”教學,既要求學生找到問題的答案,又要求學生在解決問題的過程中,掌握數量關系和應用題的結構特征,為學習更復雜的應用題打好基礎。3.教學目標:(1)知識目標:使學生能夠正確掌握算理,能根據已知量和問號之間的關系選擇合適的計算方法列式計算。(2)能力目標:培養(yǎng)和提高學生用所學知識解決實際問題的能力。(3)情感目標:讓學生體驗學數學,用數學的樂趣,在學習中感受到熱愛自然保護環(huán)境方面的教育。4.教學重點:讓學生用學過的知識解決簡單的實際問題。5.教學難點:學生學會選擇解決問題的方法。
4、學習有關0的加減法我為學生創(chuàng)設一個豐富的問題情境,鼓勵學生大膽發(fā)表自己的意見并進行交流,在情景中親身體驗關于0的加減法計算及在生活中的應用。用3只小鳥飛走了的情景圖,教學得數是0的減法的意義;通過兩片荷葉上的青蛙圖,教學有關0的加法。出示圖畫,讓學生仔細觀察,互相交流說說看懂了什么,并根據圖意列出算式,理解算式所表示的意思,,集體交流不同想法然后舉出生活中這樣的例子。在這一環(huán)節(jié)的教學中,我充分利用教材資源,將原來教材中靜態(tài)的圖動態(tài)化,讓學生在生動、有趣的情境中學習數學。然后,創(chuàng)設情境,用所學來的知識幫助學習伙伴解決難題,激發(fā)學生強烈的探究,解疑的欲望。最后,通過學習過程中所列出的算式,讓學生自己總結、歸納出有關0的加減法算式的規(guī)律,體驗成功的樂趣。