《貼郵票》活動要求:A、每組4人,給四封不同地點、質量的信件B、根據信封上的信息計算郵費并按要求貼上郵票(郵票的總面值剛好等于郵費,不能多貼)每封信最多貼三張郵票,只有0.8元或1.2元的兩種郵票紀律要求:看看哪組合作得最好,速度最快!如果遇到困難,在事發(fā)那個在一邊最后再去解決。3、小組匯報(1)、貼郵票的過程中大家遇到了什么問題?(有的能貼有的不能貼)這樣的信件有哪些?(告訴我地點、質量、郵費)(2)、其他的信件都能貼出來嘛?說說看你是怎么貼郵票的?(3)、請將你們貼好郵票的信件送到郵箱來。剩下的都是一些“難題”(4)、思考:為什么4.0元、4.8元、6元的郵費沒有辦法按要求貼出郵票?(5)、原因出在哪里?這個問題怎么解決?(郵票面值太小,將郵票的面值改大)(6)、那最少要改成多大的?為什么?(將郵票面值改大,你會從多大面值的郵票開始考慮?為什么?)
學生在觀察和討論后,由師生合作,歸納出中心對稱的性質:(1)關于中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分;(2)關于中心對稱的兩個圖形是全等圖形.讓學生嘗試自己證明△ABC與△A′B′C′全等,然后在教師的引導下相互交流。接著,對“軸對稱”和“中心對稱”的概念進行比較,我采用列表格的方式,從三個方面分別讓學生去填,意圖讓學生把新學的知識及時納入到已學的知識體系中去。4、靈活運用體會內涵1)首先講授例1。(1)選擇點O為對稱中心,畫出點A關于點O的對稱點A′;(2)選擇點O為對稱中心,畫出線段AB關于點O的對稱線段A′B′.(3)已知四邊形ABCD和O點,畫出四邊形ABCD關于O點的對稱圖形。在老師的引導下,共同完成作圖,并規(guī)范畫圖方法:要畫一個多邊形關于已知點的對稱圖形,只要畫出這個多邊形的各個頂點關于已知點的對稱點,再順次連接各點即可。在本次活動中,意圖利用中心對稱的性質進行作圖,加強對中心對稱性質的理解。
一、說教材《分式的加減法》是本冊教材第三章《分式》重要內容,是進一步學習分式方程、反比例函數以及其它數學知識的基礎,同時也是學習物理、化學等學科不可缺少的工具。與其它數學知識一樣,它在實際生活中有著廣泛的應用。學習分式的加減法并熟練地進行運算是學好分式運算的關鍵,為學生綜合運用多種運算法則拓寬了空間,有利于學生對雙基的掌握,在綜合運用多種運算法則的過程中,逐漸形成運算能力。同時本節(jié)課的教學難度有所增加,學生通過觀察、類比、猜想、嘗試等一系列思維活動中,發(fā)現規(guī)則、理解規(guī)則、應用規(guī)則??紤]到以上這些因素,確定本節(jié)課的目標和重點、難點如下:(一)說教學目標:1.知識與技能目標:理解并掌握異分母分式加減法的法則;經歷異分母分式的加減運算和通分的過程,訓練學生的分式運算能力,培養(yǎng)學生在學習中轉化未知問題為已知問題的能力;進一步通過實例發(fā)展學生的符號感。
一、關于教學目標的確定:第五章的主要內容是一元一次不等式(組)的解法及其在簡單實際問題中的探索與應用。探索不等式的基本性質是在為本章的重點一元一次不等式的解法作準備。不等式的基本性質3更是本章的難點??墒钦f不等式的基本性質這個概念既是不等式這一章的基礎概念又是學生學習的難點。因此我選擇此節(jié)課說課。教參指導我們:教學要注重和學生已有的學習經驗和生活實際相聯系,注重讓學生經歷和體會“從實際問題中抽象出數學模型,并回到實際問題中解釋和檢驗”的過程。注重“概念的實際背景與形成過程”的教學。使學生在熟悉的實際問題中,在已有的學習經驗的基礎上,經歷“嘗試—猜想—驗證”的探索過程,體會“轉化”的思想方法,體會數學的價值,激發(fā)學習興趣。在教學中要滲透函數思想。運用數學中歸納、類比的方法,理解方程與不等式的異同點。
教學說明:問題(1)是借助“邊邊邊”條件判定三角形全等的知識來解釋的。因為三邊長度確定后三角形的形狀就被固定了,因此三角形具有穩(wěn)定性。問題(2)可用多媒體展示三角形穩(wěn)定性在實際生活中應用的例子。要解決問題(3),只需要在四邊形中構建出三角形結構,這樣就可以幫助其穩(wěn)定。設計意圖:通過學生動手操作,探究三角形穩(wěn)定性及生活中的應用,讓學生體驗數學來源于生活,服務于生活的辯證思想,感受數學美。 (五)總結反思,情意發(fā)展問題:通過這節(jié)課的學習你有什么收獲?多媒體演示:(1)知識方面:①三邊對應相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。②三角形具有穩(wěn)定性。(2)技能方面:說明三角形全等時要注意公共邊的應用。
設計意圖:知識的掌握需要由淺到深,由易到難.我所設計的三個例題難度依次上升,根據由簡到難的原則,先讓學生學會熟悉選用公式,再進一步到公式的變形應用,鞏固知識.特別是第三題特別強調了運用法則的前提:必需要底數相同.為加深學生對法則的理解記憶,形成“學以致用”的思想.同時為了調動學生思考,接下來讓學生進入反饋練習階段,進一步鞏固記憶.4、知識反饋,提高反思練習1(1)口答設計意圖:根據夸美紐斯的教學鞏固性原則,為了培養(yǎng)學生獨立解決問題的能力,在例題講解后,通過讓個別同學上黑板演演,其余同學在草稿本上完成練習的方式來掌握學生的學習情況,從而對講解內容作適當的補充提醒.同時,在活動中引起學生的好奇心和強烈的求知欲,在獲得經驗和策略的同時,獲得良好的情感體驗.
4、鞏固新知,拓展新知(羊羊競技場)本環(huán)節(jié)在學生對性質基本熟悉后安排了四組訓練題,為避免學生應用性質的粗糙感,以小羊展開競技表演為背景,讓學生在輕松愉快的氛圍中層層遞進,不斷深入,達到強化性質,拓展性質的目的。提高學生的辨別力;進一步增強學生運用性質解決問題的能力;訓練學生的逆向思維能力,增強學生應變能力和解題靈活性.5、提煉小結完善結構(羊羊總結會)“通過本節(jié)課的學習,你在知識上有哪些收獲,你學到了哪些方法?”引導學生自主總結。設計意圖:使學生對本節(jié)課所學知識的結構有一個清晰的認識,能抓住重點進行課后復習。以及通過對學習過程的反思,掌握學習與研究的方法,學會學習,學會思考。6、課堂檢測,發(fā)展?jié)撃埽ù髴?zhàn)灰太狼)
情景感知概括運用設疑誘導動手操作合作交流嘗試活動啟發(fā)引導類比發(fā)現演練結合觀察分析自主探索問題討論利用嘗試活動“我來當老師!”給學生提供設計問題的機會,培養(yǎng)他們實事求是的科學態(tài)度,勇于質疑、敢于創(chuàng)新的良好習慣及數學應用能力。例1、根據因式分解的概念,判斷下列由左邊到右邊的變形,哪些是因式分解,哪些不是,為什么?通過羅列一些似是而非、容易產生錯誤的對象讓學生辨析,促使他們認識概念的本質、確定概念的外延,從而形成良好的認知結構。例2:解答下列問題:(1)993-99能被99整除嗎?能被98整除嗎?能被100整除嗎?(2)求代數式IR1+IR2+IR3的值,其中R1=19.2,R2=35.4,R3=32.4,I=2.5。讓學生進一步體會用分解因式解決相關問題的簡捷性。例3、填空:若x2+mx-n能分解成(x-2)(x-5),則m=,n=。
活動四:自主學習,尺規(guī)作圖先閱讀,再嘗試作圖,思考作圖道理,小組討論,“為什么作圖過程中必須以大于1/2AB的長為半徑畫?。俊蓖姥菔境咭?guī)作圖。最后折紙驗證,使整個學習過程更加嚴謹。我將用下面這個課件給學生展示作圖過程。再次回顧情境,讓學生完成情境中的問題。(三)講練結合,鞏固新知第一個題目是直接運用性質解決問題,比較簡單,面向全體學生。我還設計了第二個題目,想訓練學生審題的能力。(四)課堂小結在學生們共同歸納總結本節(jié)課的過程中,讓學生獲得數學思考上的提高和感受成功的喜悅并進一步系統(tǒng)地完善本節(jié)課的知識。(五)當堂檢測為了檢測學生學習情況,我設計了當堂檢測。第一個題目,讓學生學會轉化的思想來解決問題;第二個題目練習尺規(guī)作圖。
[設計意圖]節(jié)環(huán)節(jié)的設置是為了使學生在掌握不等式性質的基礎之上,加以拓展的作業(yè),使課程的內容不但能滿足全體學生需求,更能滿足學有余力的學生得到更大收獲,從數軸上獲取信息來完成填空,從而體現數形結合的思想,學生通過參與活動,體會挑戰(zhàn)成功的喜悅,并且他們的求勝心理得到了滿足,沉醉在知識給他們帶來的快感中完成本節(jié)課的學習,(六)課堂小結最后,凱旋歸來話收獲:通過本節(jié)課的學習,你收獲到了什么?學生們都積極的舉手回答,說出了各種各樣的收獲,比如:1、學會了不等式的三條基本性質2、學會了用字母來表示不等式的性質3、學生不等式與等式的區(qū)別等等;學生在回答的時候,老師加以評價和表揚并展示主要內容;這里教師要再次強調,特別注意性質3,兩邊同乘(或除以)一個負數時,不等號的方向要改變,數學思想的方法是數學的靈魂,這節(jié)課我們體驗了三種數學思想,一是類比的思想,二是數形結合的思想,三是分類討論的思想,
一、教材分析軸對稱是現實生活中廣泛存在的一種現象,本章內容定位于生活中軸對稱現象的分析,全章內容按照“直觀認識——探索性質——簡單圖形——圖案設計”這一主線展開,而這節(jié)課作為全章的最后一節(jié),主要作用是將本章內容進行回顧和深化,使學生通過折疊、剪紙等一系列活動對生活中的軸對稱現象由“直觀感受”逐漸過渡到從“數學的角度去理解”,最后通過圖案設計再將“數學運用到生活中”。軸對稱是我們探索一些圖形的性質,認識、描述圖形形狀和位置關系的重要手段之一。在后面的學習中,還將涉及用坐標的方法對軸對稱刻畫,這將進一步深化我們對軸對稱的認識,也為“空間與圖形”后繼內容的學習打下基礎。二、學情分析學生之前已經認識了軸對稱現象,通過扎紙?zhí)剿髁溯S對稱的性質,并在對簡單的軸對稱圖形的認識過程中加深了對軸對稱的理解,但是對生活中的軸對稱現象仍然以“直觀感受”為主。
經過探究發(fā)現只有10與11出現的概率最大且相等(在探究的過程中提醒學生按求等可能性事件的概率步驟來做,在判斷是否等可能和求某個事件的基本數上多啟發(fā)和引導,幫助學生順利突破難點。)及時表揚答對的學生,因為這個問題整整過了三個世紀,才被意大利著名的天文學家伽利略解決。后來法國數學家拉普拉斯在他的著作《分析概率論》中,把伽利略的這個解答作為概率的一個基本原理來引用。(適當的滲透一些數學史,學生對學習的興趣更濃厚,可以激發(fā)學生課后去進一步的探究前輩們是如何從不考慮順序到想到考慮順序的)8、課堂小結:通過這節(jié)課的學習,同學們回想一下有什么收獲?1、基本事件和等可能性事件的定義。2、等可能性事件的特征:(1)、一次試驗中有可能出現的結果是有限的。(2)、每一結果出現的可能性相等。3、求等可能性事件概率的步驟:(1)審清題意,判斷本試驗是否為等可能性事件。
(3)例題1的設計,一方面是幫助學生從生實際問題背景中逐步建立古典概型的解題模式;另一方面也可進一步理解古典概型的概念與特征,重點突破“等可能性”這個理解的難點。 采用學生分組討論的方式完。在整個活動中學生作為活動設計者、參與者.主持者;老師起到組織和指導的作用。為了讓學生進一步認識和理解隨機思想,認識和理解概率的含義—概率是一種度量,是對隨機事件發(fā)生可能性大小的一種度量.讓學生觀察圖表,得出對稱的規(guī)律。預計學生在構建等可能性事件模型時要花一些時間。(4)例題1的拓展設計:看學生能否能在例1的基礎上利用類比的思想來建構數學模型,并得出求事件 A包含的基本事件數常用的方法有樹狀圖法,枚舉法,圖表法,排列組合法等方法。適當的滲透一些數學史,學生對學習的興趣更濃厚,可以激發(fā)學生課后去進一步的探究前輩們是如何從不考慮順序到想到考慮順序的
6、袋子里有8個紅球,m個白球,3個黑球,每個球除顏色外都相同,從中任意摸出一個球,若摸到紅球的可能性最大,則m的值不可能是( )A.1 B.3 C. 5 D.10活動目的:拓寬學生的思路,對本節(jié)知識進行查缺補漏,并進一步的鞏固加深,鼓勵學生大膽猜測,培養(yǎng)學生勤于動腦、勇于探究的精神. 注意事項:對于第4題與第5題可適當的說出事件發(fā)生的可能性的大小,即概率的大小,為今后學習概率做鋪墊;對于第6題可根據回答情況講解.七、學習小結:師生共同回顧新知探究的整個過程,互相交流總結本節(jié)的知識點:(1)理解確定事件與不確定事件;(2)知道不確定事件發(fā)生的可能性有大有??;(3)合理運用所學知識分析解決相關問題.目的:鍛煉學生的口頭表達能力,體會學習的成果,感受成功的喜悅,增強學好數學的信心.(學生暢所欲言,教師給予鼓勵)
(1)上午9時的溫度是多少?12時呢?(2)這一天的最高溫度是多少?是在幾時達到的?最低溫度呢?(3)這一天的溫差是多少?從最高溫度到最低溫度經過了多長時間?(4)在什么時間范圍內溫度在上升?在什么時間范圍內溫度在下降?(5)圖中的A點表示的是什么?B點呢?(6)你能預測次日凌晨1時的溫度嗎?說說你的理由.2、議一議:駱駝被稱為“沙漠之舟”,你知道關于駱駝的一些趣事嗎?例:它的體溫隨時間的變化而發(fā)生較大的變化:白天,隨沙漠溫度的驟升,駱駝的體溫也升高,當體溫達到40℃時,駱駝開始出汗,體溫也開始下降.夜間,沙漠的溫度急劇降低,駱駝的體溫也繼續(xù)降低,大約在凌晨4時,駱駝的體溫達到最低點.3、如下圖,是駱駝的體溫隨時間變化而變化的的關系圖,據圖回答下列問題:
1.要創(chuàng)造性的使用教材,不拘泥于教材的形式。教材為學生的學習活動提供了基本線索,實施新課程目標、實施教學的重要資源。在教學中要創(chuàng)造性地使用教材。本節(jié)課教師通過具體的現實情境,充分利用學生的生活經驗,讓學生體驗到數學來源于生活,打破了傳統(tǒng)的注入式的教學模式,通過一系列精心設計把它改成學生所經歷的情境引入課題,激發(fā)了學生的學習興趣。在教學中引導學生進行“猜想一實驗一分析一交流一發(fā)現一應用”, 學生在操作、思考、交流中不斷地發(fā)現問題,解決問題,極大地調動了學生的學習的積極性,讓學生嘗到了成功的喜悅,激發(fā)了學生的發(fā)現思維的火花,經歷了一番前人發(fā)現這個結果的“濃縮”過程,從而培養(yǎng)了學生獨立探究和解決問題的能力。2. 相信學生并為學生提供充分展示自己的機會通過課堂上小組合作擲硬幣試驗、并展示試驗結果的過程,為學生提供展示自己聰明才智的機會,并且在此過程中更利于教師發(fā)現學生分析問題解決問題的獨到見解,以及思維的誤區(qū),以便指導今后的教學。
4.已知一個三角形的兩邊長分別是4cm、7cm,則這個三角形的周長的取值范圍是什么?目的:主要是讓學生掌握三角形三邊的和差關系具體的應用,并能應用生活中實際問題。同學之間可以合作交流互相探討,發(fā)展學生空間觀念、推理能力,使學生善于觀察生活、樂于探索研究,激發(fā)學生學習數學的積極性,從中適當的對學生進行德育教育,教育學生穿越馬路時間越長就越危險。(五)課堂小結學生自我談收獲體會,說說學完本節(jié)課的困惑。教師做最終總結并指出注意事項。目的:讓學生暢所欲言,談收獲體會,教師給予鼓勵。主要是讓學生熟記新知能應用新知解決問題,培養(yǎng)學生概括總結的能力、有條理的表達能力。注意事項為:判斷a,b,c三條線段能否組成一個三角形,應注意:a+b>c,a+c>b,b+c>a三個條件缺一不可。當a是a,b,c三條線段中最長的一條時,只要b+c>a就是任意兩條線段的和大于第三邊。
一、教材分析1.教材的地位與作用本節(jié)課是在學生學習了三角形的基本概念后,引入圖形的全等。這節(jié)課探究對象是生活中的常見全等圖形,主要是探究全等圖形的概念和特征,通過系列學習活動,引導學生體驗數學與生活的密切聯系,激發(fā)學生學習數學的興趣,培養(yǎng)良好的學習品質。同時這節(jié)課的內容也是下一節(jié)學習全等三角以及三角形全等的判定的奠基石,它對知識的聯系起到承上啟下的作用。2.教學目標依據《課程標準》要求本階段的學生應初步會運用數學的思維方式去觀察、分析現實生活中出現的實際問題,體會數學與生活的密切聯系,增進對數學的理解和學好數學的信心。因此我確立本節(jié)課的教學目標如下:知識技能目標:通過實例,使學生理解圖形全等的概念,掌握全等圖形的特征,能在不同的圖形中識別出全等的圖形過程與方法:通過觀察,動手實驗,培養(yǎng)學生動手操作能力、觀察能力以及合作與交流的能力
一.情境引入:師:我們生活在一個變化的世界中,很多東西都在悄悄地發(fā)生變化你能從生活中舉出一些發(fā)生變化的例子嗎?生1:從春季到夏季氣溫在逐漸增加.生2:小樹每年都在長高長粗.生3:我杯子里的水喝一口少一口.(說著就拿起杯子喝水,引起同學哈哈大笑)師: 你這個變化中有幾個量在變化?生3:兩個,一個是喝的口數,一個是水的多少?師: 它們的變化有什么聯系嗎?生3:有,隨著喝的口數的增加,瓶中的水越來越少.生4:那我的這張紙越撕越?。ù藭r該同學順便從自己本子上撕下一張紙并將這張紙一次一次的撕下去,其他同學們點頭稱是)師: 你這個變化中又有幾個量?它們又是怎么變化的?生4:兩個,一個是撕的次數,另一個是紙的大?。畮煟耗敲茨膫€量隨哪個量的變化而變化的呢?
練習3、先化簡,再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通過例題和聯系將所學知識升華,提升)練習4、動動腦。(讓學生進一步感知生活中處處有數學)(四)、暢談收獲、拓展升華1、本節(jié)課你學到了什么?依據是什么?整式的乘法存在什么沒有解決的問題?(同桌互講,師生共同小結)2、布置作業(yè):習題1.9知識技能1四、說課小結本堂課我主要采用引導探索法教學,倡導學生自主學習、嘗試學習、探究學習、合作交流學習,鼓勵學生用所學的知識解決身邊的問題,注重教學效果的有效性。學生在合作學習中,可以活躍課堂氣氛,消除心理壓力,在愉快的環(huán)境中學習知識,有效地拓展學生思維,成功地培養(yǎng)學生的觀察能力、思維能力、合作探究能力、交流能力和數學學習能力。但由于本人對新課標和新教材的理解不一定十分到位,所以在教材本身內在規(guī)律的把握上,會存在一定的偏差;另外,由于對學生的認知規(guī)律認識不夠,所以教學活動的設計不一定十分有效。所有這些都有待教學實踐的檢驗。