一般情況下,凡是支持物對物體的支持力,都是支持物因發(fā)生形變而對物體產(chǎn)生彈力。所以支持力的方向總是垂直于支持面而指向被支持的物體。例1:放在水平桌面上的書書由于重力的作用而壓迫桌面,使書和桌面同時發(fā)生微小形變,要恢復(fù)原狀,對桌面產(chǎn)生垂直于桌面向下的彈力f1,這就是書對桌面的壓力;桌面由于發(fā)生微小的形變,對書產(chǎn)生垂直于書面向上的彈力f2,這就是桌面對書的支持力。學生分析:靜止地放在傾斜木板上的書,書對木板的壓力和木板對書的支持力。并畫出力的示意圖。結(jié)論:壓力、支持力都是彈力。壓力的方向總是垂直于支持面而指向被壓的物體,支持力的方向總是垂直于支持面而指向被支持的物體。引導學生分析靜止時,懸繩對重物的拉力及方向。引導得出:懸掛物由于重力的作用而拉緊懸繩,使重物、懸繩同時發(fā)生微小的形變。重物由于發(fā)生微小的形變,對懸繩產(chǎn)生豎直向下的彈力f1,這是物對繩的拉力;懸繩由于發(fā)生微小形變,對物產(chǎn)生豎直向上的彈力f2,這就是繩對物體的拉力。
一、教材內(nèi)容經(jīng)全國中小學教材審定委員會2004年初審查通過,人教育出版社出版的普通高中課程標準實驗教科書《物理必修①》,第三章第5節(jié)內(nèi)容“力的分解”。二、教學目標1.知識與技能(1)理解分力的概念,理解力的分解是力的合成的逆運算,遵循平行四邊形定則。(2)初步掌握一般情況下力的分解要根據(jù)實際需要來確定分力的方向。(3)會用作圖法和直角三角形的知識求分力。(4)能區(qū)別矢量和標量,知道三角形定則,了解三角形定則與平行四邊形定則的實質(zhì)是一樣的。2.過程與方法(1)進一步領(lǐng)會“等效替代”的思想方法。(2)通過探究嘗試發(fā)現(xiàn)問題、探索問題、解決問題能力。(3)掌握應(yīng)用數(shù)學知識解決物理問題的能力。3.情感態(tài)度與價值觀(1)通過猜測與探究享受成功的快樂。(2)感受物理就在身邊,有將物理知識應(yīng)用于生活和生產(chǎn)實驗的意識。三、教學重點、難點在具體問題中如何根據(jù)力的實際作用效果和平行四邊形定則進行力的分解。
l.知識與技能:(1)知道摩擦力產(chǎn)生的條件。(2)能在簡單問題中,根據(jù)物體的運動狀態(tài),判斷靜摩擦力的有無、大小和方向;知道存在著最大靜摩擦力。(3)掌握動磨擦因數(shù),會在具體問題中計算滑動磨擦力,掌握判定摩擦力方向的方法。(4)知道影響到摩擦因數(shù)的因素。2.過程與方法:通過觀察演示實驗,概括出摩擦力產(chǎn)生的條件及摩擦力的特點,培養(yǎng)學生的觀察、概括能力。通過靜摩擦力與滑動摩擦力的區(qū)別對比,培養(yǎng)學生分析綜合能力。3.情感態(tài)度價值觀:在分析物體所受摩擦力時,突出主要矛盾,忽略次要因素及無關(guān)因素,總結(jié)出摩擦力產(chǎn)生的條件和規(guī)律。二、重點、難點分析1.本節(jié)課的內(nèi)容分滑動摩擦力和靜摩擦力兩部分。重點是摩擦力產(chǎn)生的條件、特性和規(guī)律,通過演示實驗得出關(guān)系f=μN。2.難點是學生有初中的知識,往往誤認為壓力N的大小總是跟滑動物體所受的重力相等,因此必須指出只有當兩物體的接觸面垂直,物體在水平拉力作用下,沿水平面滑動時,壓力N的大小才跟物體所受的重力相等。
1.用CAI課件模擬汽車的啟動過程。師生共同討論:①如果作用在物體上的力為恒力,且物體以勻速運動,則力對物體做功的功率保持不變。此情況下,任意一段時間內(nèi)的平均功率與任一瞬時的瞬時功率都是相同的。②很多動力機器通常有一個額定功率,且通常使其在額定功率狀態(tài)工作(如汽車),根據(jù)P=FV可知:當路面阻力較小時,牽引力也小,速度大,即汽車可以跑得快些;當路面阻力較大,或爬坡時,需要比較大的牽引力,速度必須小。這就是爬坡時汽車換低速擋的道理。③如果動力機器在實際功率小于額定功率的條件下工作,例如汽車剛剛起動后的一段時間內(nèi),速度逐漸增大過程中,牽引力仍可增大,即F和v可以同時增大,但是這一情況應(yīng)以二者乘積等于額定功率為限度,即當實際功率大于額定功率以后,這種情況不可能實現(xiàn)。
(五)平拋運動規(guī)律的應(yīng)用例1:一架老式飛機在高出海面45m的高處,以80m/s的速度水平飛行,為了使飛機上投下的炸彈落在停在海面上的敵船,應(yīng)該在與轟炸目標的水平距離為多遠的地方投彈?不計空氣阻力。分析:對于這道題我們可以從以下幾個方面來考慮:(1)從水平飛行的飛機上投下的炸彈,做什么運動?為什么?(2)炸彈的這種運動可分解為哪兩個什么樣的分運動?3)要想使炸彈投到指定的目標處,你認為炸彈落地前在水平方向通過的距離與投彈時飛機離目標的水平距離之間有什么關(guān)系?拓展:1、式飛機在高出海面45m的高處,以80m/s的速度水平飛行,尾追一艘以15m/s逃逸的敵船,為了使飛機上投下的炸彈正好擊中敵船,應(yīng)該在與轟炸目標的水平距離為多遠的地方投彈?不計空氣阻力。2、在一次摩托車跨越壕溝的表演中,摩托車從壕溝的一側(cè)以速度v=40m/s沿水平方向向另一側(cè),壕溝兩側(cè)的高度及寬度如圖所示,摩托車可看做質(zhì)點,不計空氣阻力。(1)判斷摩托車能否跨越壕溝?請計算說明(2)若能跨過,求落地速度?
3.進一步體會力是產(chǎn)生加速度的原因,并通過牛頓第二定律來理解勻速圓周運動、變速圓周運動及一般曲線運動的各自特點。(三)、情感、態(tài)度與價值觀1.在實驗中,培養(yǎng)學生動手、探究的習慣。2.體會實驗的意義,感受成功的快樂,激發(fā)學生探究問題的熱情、樂于學習的品質(zhì)。教學重點1.體會牛頓第二定律在向心力上的應(yīng)用。2.明確向心力的意義、作用、公式及其變形,并經(jīng)行計算。教學難點1.對向心力的理解及來源的尋找。2.運用向心力、向心加速度的知識解決圓周運動問題。教學過程(一)、 引入新課:復(fù)習提問:勻速圓周運動的物體的加速度——向心加速度,它的方向和大小有何特點呢?學生回答后進一步引導:那做勻速圓周運動物體的受力有什么特點呢?是什么力使物體做圓周運動而不沿直線飛出?請同學們先閱讀教材
冪函數(shù)是在繼一次函數(shù)、反比例函數(shù)、二次函數(shù)之后,又學習了單調(diào)性、最值、奇偶性的基礎(chǔ)上,借助實例,總結(jié)出冪函數(shù)的概念,再借助圖像研究冪函數(shù)的性質(zhì).課程目標1、理解冪函數(shù)的概念,會畫冪函數(shù)y=x,y=x2,y=x3,y=x-1,y=x 的圖象;2、結(jié)合這幾個冪函數(shù)的圖象,理解冪函數(shù)圖象的變化情況和性質(zhì);3、通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學生概括抽象和識圖能力.數(shù)學學科素養(yǎng)1.數(shù)學抽象:用數(shù)學語言表示函數(shù)冪函數(shù);2.邏輯推理:常見冪函數(shù)的性質(zhì);3.數(shù)學運算:利用冪函數(shù)的概念求參數(shù);4.數(shù)據(jù)分析:比較冪函數(shù)大??;5.數(shù)學建模:在具體問題情境中,運用數(shù)形結(jié)合思想,利用冪函數(shù)性質(zhì)、圖像特點解決實際問題。重點:常見冪函數(shù)的概念、圖象和性質(zhì);難點:冪函數(shù)的單調(diào)性及比較兩個冪值的大?。?/p>
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.3.2節(jié)《對數(shù)的運算》。其核心是弄清楚對數(shù)的定義,掌握對數(shù)的運算性質(zhì),理解它的關(guān)鍵就是通過實例使學生認識對數(shù)式與指數(shù)式的關(guān)系,分析得出對數(shù)的概念及對數(shù)式與指數(shù)式的 互化,通過實例推導對數(shù)的運算性質(zhì)。由于它還與后續(xù)很多內(nèi)容,比如對數(shù)函數(shù)及其性質(zhì),這也是高考必考內(nèi)容之一,所以在本學科有著很重要的地位。解決重點的關(guān)鍵是抓住對數(shù)的概念、并讓學生掌握對數(shù)式與指數(shù)式的互化;通過實例推導對數(shù)的運算性質(zhì),讓學生準確地運用對數(shù)運算性質(zhì)進行運算,學會運用換底公式。培養(yǎng)學生數(shù)學運算、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1、理解對數(shù)的概念,能進行指數(shù)式與對數(shù)式的互化;2、了解常用對數(shù)與自然對數(shù)的意義,理解對數(shù)恒等式并能運用于有關(guān)對數(shù)計算。
學生已經(jīng)學習了指數(shù)運算性質(zhì),有了這些知識作儲備,教科書通過利用指數(shù)運算性質(zhì),推導對數(shù)的運算性質(zhì),再學習利用對數(shù)的運算性質(zhì)化簡求值。課程目標1、通過具體實例引入,推導對數(shù)的運算性質(zhì);2、熟練掌握對數(shù)的運算性質(zhì),學會化簡,計算.數(shù)學學科素養(yǎng)1.數(shù)學抽象:對數(shù)的運算性質(zhì);2.邏輯推理:換底公式的推導;3.數(shù)學運算:對數(shù)運算性質(zhì)的應(yīng)用;4.數(shù)學建模:在熟悉的實際情景中,模仿學過的數(shù)學建模過程解決問題.重點:對數(shù)的運算性質(zhì),換底公式,對數(shù)恒等式及其應(yīng)用;難點:正確使用對數(shù)的運算性質(zhì)和換底公式.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入回顧指數(shù)性質(zhì):(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對數(shù)有哪些性質(zhì)?如 要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.
對數(shù)與指數(shù)是相通的,本節(jié)在已經(jīng)學習指數(shù)的基礎(chǔ)上通過實例總結(jié)歸納對數(shù)的概念,通過對數(shù)的性質(zhì)和恒等式解決一些與對數(shù)有關(guān)的問題.課程目標1、理解對數(shù)的概念以及對數(shù)的基本性質(zhì);2、掌握對數(shù)式與指數(shù)式的相互轉(zhuǎn)化;數(shù)學學科素養(yǎng)1.數(shù)學抽象:對數(shù)的概念;2.邏輯推理:推導對數(shù)性質(zhì);3.數(shù)學運算:用對數(shù)的基本性質(zhì)與對數(shù)恒等式求值;4.數(shù)學建模:通過與指數(shù)式的比較,引出對數(shù)定義與性質(zhì).重點:對數(shù)式與指數(shù)式的互化以及對數(shù)性質(zhì);難點:推導對數(shù)性質(zhì).教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入已知中國的人口數(shù)y和年頭x滿足關(guān)系 中,若知年頭數(shù)則能算出相應(yīng)的人口總數(shù)。反之,如果問“哪一年的人口數(shù)可達到18億,20億,30億......”,該如何解決?要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.
函數(shù)在高中數(shù)學中占有很重要的比重,因而作為函數(shù)的第一節(jié)內(nèi)容,主要從三個實例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結(jié)合三要素判斷函數(shù)相等.課程目標1.理解函數(shù)的定義、函數(shù)的定義域、值域及對應(yīng)法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學會求函數(shù)的定義域與函數(shù)值。數(shù)學學科素養(yǎng)1.數(shù)學抽象:通過教材中四個實例總結(jié)函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學運算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運用分離常數(shù)法和換元法求值域;5.數(shù)學建模:通過從實際問題中抽象概括出函數(shù)概念的活動,培養(yǎng)學生從“特殊到一般”的分析問題的能力,提高學生的抽象概括能力。重點:函數(shù)的概念,函數(shù)的三要素。難點:函數(shù)概念及符號y=f(x)的理解。
《基本不等式》在人教A版高中數(shù)學第一冊第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導和證明過程。本章一直在研究不等式的相關(guān)問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。課程目標1.掌握基本不等式的形式以及推導過程,會用基本不等式解決簡單問題。2.經(jīng)歷基本不等式的推導與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學的嚴謹性。數(shù)學學科素養(yǎng)1.數(shù)學抽象:基本不等式的形式以及推導過程;2.邏輯推理:基本不等式的證明;3.數(shù)學運算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實際問題;5.數(shù)學建模:利用函數(shù)的思想和基本不等式解決實際問題,提升學生的邏輯推理能力。重點:基本不等式的形成以及推導過程和利用基本不等式求最值;難點:基本不等式的推導以及證明過程.
例7 用描述法表示拋物線y=x2+1上的點構(gòu)成的集合.【答案】見解析 【解析】 拋物線y=x2+1上的點構(gòu)成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變設(shè)問]本題中點的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實數(shù).變式2.[變條件,變設(shè)問]本題中點的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實數(shù).解題技巧(認識集合含義的2個步驟)一看代表元素,是數(shù)集還是點集,二看元素滿足什么條件即有什么公共特性。
本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數(shù)學抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學運算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學思想方法;
學生在初中學習了 ~ ,但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.因此為了準確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉(zhuǎn)一周回到起始位置,在這個過程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.
知識探究(一):普查與抽查像人口普查這樣,對每一個調(diào)查調(diào)查對象都進行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個調(diào)查中,我們把調(diào)查對象的全體稱為總體,組成總體的每一個調(diào)查對象稱為個體。為了強調(diào)調(diào)查目的,也可以把調(diào)查對象的某些指標的全體作為總體,每一個調(diào)查對象的相應(yīng)指標作為個體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經(jīng)常進行。為了及時掌握全國人口變動狀況,我國每年還會進行一次人口變動情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個體進行調(diào)查,并以此為依據(jù)對總體的情況作出估計和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數(shù)稱為樣本量。
本節(jié)主要內(nèi)容是三角函數(shù)的誘導公式中的公式二至公式六,其推導過程中涉及到對稱變換,充分體現(xiàn)對稱變換思想在數(shù)學中的應(yīng)用,在練習中加以應(yīng)用,讓學生進一步體會 的任意性;綜合六組誘導公式總結(jié)出記憶誘導公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數(shù)學思想的探究過程,培養(yǎng)學生用聯(lián)系、變化的辯證唯物主義觀點去分析問題的能力。誘導公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學生能熟練的掌握和應(yīng)用。課程目標1.借助單位圓,推導出正弦、余弦第二、三、四、五、六組的誘導公式,能正確運用誘導公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關(guān)三角函數(shù)求值、化簡和恒等式證明問題2.通過公式的應(yīng)用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。
4.有8種不同的菜種,任選4種種在不同土質(zhì)的4塊地里,有 種不同的種法. 解析:將4塊不同土質(zhì)的地看作4個不同的位置,從8種不同的菜種中任選4種種在4塊不同土質(zhì)的地里,則本題即為從8個不同元素中任選4個元素的排列問題,所以不同的種法共有A_8^4 =8×7×6×5=1 680(種).答案:1 6805.用1、2、3、4、5、6、7這7個數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù).(1)這些四位數(shù)中偶數(shù)有多少個?能被5整除的有多少個?(2)這些四位數(shù)中大于6 500的有多少個?解:(1)偶數(shù)的個位數(shù)只能是2、4、6,有A_3^1種排法,其他位上有A_6^3種排法,由分步乘法計數(shù)原理,知共有四位偶數(shù)A_3^1·A_6^3=360(個);能被5整除的數(shù)個位必須是5,故有A_6^3=120(個).(2)最高位上是7時大于6 500,有A_6^3種,最高位上是6時,百位上只能是7或5,故有2×A_5^2種.由分類加法計數(shù)原理知,這些四位數(shù)中大于6 500的共有A_6^3+2×A_5^2=160(個).
探究新知問題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機變量X的分布列.(1):采用有放回抽樣,隨機變量X服從二項分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨立,此時X服從二項分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機變量X服從超幾何分布.
二項式定理形式上的特點(1)二項展開式有n+1項,而不是n項.(2)二項式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項展開式中某一項的系數(shù)不一定相等.(3)二項展開式中的二項式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項起,次數(shù)由n次逐項減少1次直到0次,同時字母b按升冪排列,次數(shù)由0次逐項增加1次直到n次.1.判斷(正確的打“√”,錯誤的打“×”)(1)(a+b)n展開式中共有n項. ( )(2)在公式中,交換a,b的順序?qū)Ω黜棝]有影響. ( )(3)Cknan-kbk是(a+b)n展開式中的第k項. ( )(4)(a-b)n與(a+b)n的二項式展開式的二項式系數(shù)相同. ( )[解析] (1)× 因為(a+b)n展開式中共有n+1項.(2)× 因為二項式的第k+1項Cknan-kbk和(b+a)n的展開式的第k+1項Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因為Cknan-kbk是(a+b)n展開式中的第k+1項.(4)√ 因為(a-b)n與(a+b)n的二項式展開式的二項式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√