通常購買同一品種的西瓜時,西瓜的質(zhì)量越大,花費的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個西瓜的體積各是多少?(2)西瓜瓤與整個西瓜的體積比是多少?(3)買大西瓜合算還是買小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結(jié)果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個西瓜的體積是43πR3;(2)西瓜瓤與整個西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個西瓜的體積比是(R-d)3R3<1,故買大西瓜比買小西瓜合算.方法總結(jié):本題能夠根據(jù)球的體積,得到兩個物體的體積比即為它們的半徑的立方比是解此題的關(guān)鍵.
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法總結(jié):本題是線段垂直平分線的性質(zhì)和角平分線的性質(zhì)的綜合,掌握它們的適用條件和表示方法是解題的關(guān)鍵.三、板書設(shè)計1.角平分線的性質(zhì)定理角平分線上的點到這個角的兩邊的距離相等.2.角平分線的判定定理在一個角的內(nèi)部,到角的兩邊距離相等的點在這個角的平分線上.本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質(zhì)的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生在性質(zhì)的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練.
解:設(shè)另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結(jié):因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設(shè)計1.因式分解的概念把一個多項式轉(zhuǎn)化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關(guān)系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學習,引導學生探究因式分解和整式乘法的聯(lián)系,通過對比學習加深對新知識的理解.教學時采用新課探究的形式,鼓勵學生參與到課堂教學中,以興趣帶動學習,提高課堂學習效率.
教學目標:1、引導學生通過計算、比較、觀察、等實踐活動,使學生理解倒數(shù)的意義,掌握求倒數(shù)的方法,并能正確熟練的求出倒數(shù)。2、通過自主探究、合作交流的方式培養(yǎng)學生與人合作的能力。3、提高學生學習數(shù)學的興趣,發(fā)展學生質(zhì)疑的習慣。教學重點:知道倒數(shù)的意義和會求一個數(shù)的倒數(shù)教學難點:1、0的倒數(shù)的求法。二、說教法基于教材內(nèi)容比較單調(diào),那么只有在教法上體現(xiàn)新、奇、特,才能讓學生想學、要學。在教學過程中,我將始終扮演一個組織者、引導者、合作者的角色,根據(jù)小學生從具體的形象思維逐步向抽象的邏輯思維發(fā)展的思維特點,聯(lián)系小學生熟悉的身邊實際,使抽象的內(nèi)容直觀化,激發(fā)學生的學習興趣,引導學生去發(fā)現(xiàn)問題、討論問題,放手讓他們自主探究和合作交流,幫助他們在自主探究、合作交流中真正理解并掌握本節(jié)課的數(shù)學知識、技能、思想和方法。
這樣充分尊重學生的獨立思考的過程與結(jié)果,鼓勵學生想出多種方法計算,在學生匯報交流、反饋、評價中初步感受到轉(zhuǎn)化的數(shù)學思想,獲得成功的學習體驗,之后教師評價:大家能把新的問題轉(zhuǎn)化成已有的經(jīng)驗來解決,這種分析思考的方法很好,你們還能提出類似的問題嗎?進而引入進一步的探索當中,教師作出這樣的提示,這道題沒有元角分,你們能把它也轉(zhuǎn)化成已經(jīng)學過的乘法算式嗎?在學生獨立思考計算的基礎(chǔ)上,組織小組討論,給每個學生展示自己思維的機會,教師深入小組收集信息,然后組織全班討論,揭示算理,得出計算的方法。這一過程要重點突出算理的探索,使學生認識到小數(shù)乘法與整數(shù)乘法的聯(lián)系,利用積變化的規(guī)律合理解釋算理,通過學生親身經(jīng)歷,主動參與,積極思考,自學交流等活動過程,使學生真正獲得數(shù)學的知識和學習方法。
除數(shù)是整數(shù)的小數(shù)除法的計算步驟和試商方法與整數(shù)除法基本相同。它是在整數(shù)除法的基礎(chǔ)上進行教學的。又是學生以后學習小數(shù)除法的基礎(chǔ),必須溝通小數(shù)除法和整數(shù)除法的聯(lián)系,抓住新舊知識的連接點,緊密結(jié)合現(xiàn)實情境,展示學生對小數(shù)除法計算方法的探究過程,突出計算方法的教學,在掌握計算方法的同時更要理解算理。二.教學目標:1.通過自主探究、合作交流,理解小數(shù)除以整數(shù)的計算方法。2.正確地進行小數(shù)除以整數(shù)的計算,并能解決簡單的實際問題。3.培養(yǎng)學生比較、分析和歸納等思維能力;以及類比、遷移的學習能力。4.通過學習活動,培養(yǎng)積極的學習態(tài)度,樹立學好數(shù)學的信心。5.讓學生感受數(shù)學與生活的密切聯(lián)系,培養(yǎng)學習數(shù)學的興趣。重點難點:正確地進行小數(shù)除以整數(shù)的計算,并能解決簡單的實際問題是本課的重點,本課的難點是理解小數(shù)除以整數(shù)的計算方法,理解小數(shù)點為什么要對齊。
⑴、理解小數(shù)乘法交換律、結(jié)合律和分配律的意義,能運用運算定律進行小數(shù)的計算簡便。⑵、經(jīng)歷發(fā)現(xiàn)歸納小數(shù)乘法交換律、結(jié)合律、分配律的全過程。學習“猜測—驗證”的科學思維方式,提高類比、分析、概括的能力。⑶、在合作交流的學習活動中,提高人際交往能力。4、教學重點、難點從猜測—驗證中歸納乘法交換律、結(jié)合律和分配律。二、教法和學法1、充分發(fā)揮學生的主體作用,在教學中注意讓學生自主探索、發(fā)現(xiàn)規(guī)律、理解規(guī)律,通過猜測—驗證,引導啟發(fā)學生發(fā)現(xiàn)規(guī)律。引導學生積極、主動地參與到知識的形成過程中去。2、自始至終注意培養(yǎng)學生觀察、比較、抽象概括能力,教給學生觀察、比較、抽象概括的方法。在教學中不僅引導學生有序地觀察比較,還充分運用小組合作討論的手段,進行小組合作討論,各抒己見,取長補短,在觀察到的感性材料的基礎(chǔ)上加以抽象概括,形成結(jié)論。
《較復雜的小數(shù)乘法》是第九冊第一單元《小數(shù)的乘法和除法》的第三節(jié)。本 節(jié)課的教學內(nèi)容是教科書第3頁的例3、例4。這一教材是在學生學習了小數(shù)乘法的意義(小數(shù)乘以整數(shù)、一個數(shù)乘以小數(shù))、小數(shù)乘法的計算法則以及小數(shù)點位置 移動引起小數(shù)大小的變化的基礎(chǔ)上進行教學的,它是小數(shù)乘法計算法則的引伸和補充,同時也是學生今后進一步學習小數(shù)四則混合運算的基礎(chǔ)。本節(jié)課 的教學目的是:1、使學生進一步掌握小數(shù)乘法的計算法則,懂得在點積的小數(shù)點時,乘得的積的小數(shù)位數(shù)不夠的,要在前面用0補足;2、使學生初步掌握“當乘 數(shù)比1小時,積比被乘數(shù)??;當乘數(shù)比1大時,積比被乘數(shù)大”;3、培養(yǎng)學生的計算能力,自學能力和概括能力。本節(jié)課的教學重點是:讓學生掌握在定積的小數(shù) 時,位數(shù)不夠的會用0補足。
2、試做例題,掌握轉(zhuǎn)化方法明確轉(zhuǎn)化原理后,讓學生試算例題。在試做的基礎(chǔ)上引導學生進行觀察比較,抽象出轉(zhuǎn)化時小數(shù)點的移位方法,最后概括總結(jié)出移位的法則。具體做法如下:1、我認為小數(shù)除法如果按照教材按部就班教學有點不合理的,不利于學生從整體上把握小數(shù)除法,不利于學生對知識的建構(gòu)。因此,我選擇了重組教材。(把例5例6有機的結(jié)合在一起的同時也新增加了一個例題,那就是被除數(shù)小數(shù)位數(shù)比除數(shù)的小數(shù)位數(shù)多)。例5、例6和新增加例題的教學,引導學生概括總結(jié)出轉(zhuǎn)化時移位的方法,同時在此基礎(chǔ)上歸納出除數(shù)是小數(shù)的除法計算法則。在得出計算法則后,還要注意強調(diào):(1)小數(shù)點向右移動的位數(shù)取決于除數(shù)的小數(shù)位數(shù),而不由被除數(shù)的小數(shù)位數(shù)確定。(2)整數(shù)除法中,兩個數(shù)相除的商不會大于被除數(shù),而在小數(shù)除法中,當除數(shù)小于1時,商反而比被除數(shù)大。
在學習本課內(nèi)容以前,學生已經(jīng)系統(tǒng)地學習了整數(shù)四則混合運算和小數(shù)四則計算,為本節(jié)課內(nèi)容的學習打下了基礎(chǔ),由于小數(shù)四則混合運算的運算順序同整數(shù)四則混合運算的運算順序完全一樣,針對這一點,本課教學確定的教學目的是使學生熟記小數(shù)四則混合運算順序,提高計算能力。使學生熟練地掌握小數(shù)四則混合運算的運算順序,正確、迅速地進行小數(shù)四則混合式題的運算,是本課的教學重點。教學難點是:1.能否正確把握運算順序。2.能否正確標明根據(jù)以上教學目的,為了更好地突出重點,突破難點,在教學中遵循大綱的要求,從簡單入手。例1是最簡單的兩步計算題,讓學生熟悉一下運算順序。再過渡到較復雜的問題。例2是三步計算帶小括號的較復雜的四則混算題,在運算過程中出現(xiàn)了除不盡的情況,應(yīng)說明計算過程中,當除得的商超過兩位小數(shù)時,一般只需保留兩位小數(shù),再進行計算。最后進入到教學重點、難點階段。
2、教材簡析循環(huán)小數(shù)是在學生學習了小數(shù)除法的意義、小數(shù)除法的計算及商的近似值的基礎(chǔ)上進行教學的。這部分內(nèi)容概念較多,又比較抽象,是教學的一個難點。課本的例8,是教學從某一位起,一個數(shù)字重復出現(xiàn)的情況,為認識循環(huán)小數(shù)提供感性材料。例9通過計算兩道除法式題,呈現(xiàn)了除不盡時商的兩種情況:一種是從某位起重復某個數(shù)字;另一種是從某位起幾個數(shù)字依次不斷重復出現(xiàn)。由此引出循環(huán)小數(shù)的概念并介紹循環(huán)小數(shù)的簡便記法。接著教材用想一想的方式組織學生討論“兩個數(shù)相除,如果不能得到整數(shù)商,所得到的商會有哪些情況”。由兩個數(shù)相除時商的兩種情況,介紹有限小數(shù)和無限小數(shù)的概念。以前學生對小數(shù)概念的認識僅限于有限小數(shù),到學習了循環(huán)小數(shù)以后,小數(shù)概念的內(nèi)涵進一步擴展了,學生認識到除了有限小數(shù)以外,還有無限小數(shù),循環(huán)小數(shù)就是一種無限小數(shù)。
[設(shè)計意圖:根據(jù)數(shù)學來源于生活的新課程理念,課前讓學生回家搜集,課中讓學生交流,與全班同學資源共享,在此基礎(chǔ)上觀察身份證上的內(nèi)容,激發(fā)了學生參與學習的積極性。]3、討論,探索規(guī)律。⑴合作討論。①你們手中的身份證號碼有什么相同點和不同點?②誰能介紹一下自已身份證上這些數(shù)字號碼表示的意義? ⑵學生匯報。學生介紹發(fā)現(xiàn)的信息以及它們的含義。[設(shè)計意圖:這是本節(jié)課的重點,為了引導學生探索身份證號碼的編排規(guī)律,把學生分成4人小組,要求學生利用自己收集到的身份證號碼、教材等學習資源,采取觀察、比較、猜測等方法,探索身份證號碼的編碼規(guī)律,然后在全班交流學習成果,反饋學習情況,讓學生初步了解身份證號碼的編排特點。]
第三個層次,是通過師生互動,以身份證號碼為例,初步了解蘊含的一些簡單信息和編碼的含義;通過小組對自己帶來的身份證號碼進行觀察、比較、猜測來探索數(shù)字編碼的簡單方法;通過連線、判斷等初步應(yīng)用,進一步鞏固數(shù)字編碼的簡單方法。第四個層次,是通過學生互動交流自己的學號,初步體驗編碼的過程。在整個教學中,教師不束縛學生的手腳,而讓學生充分談?wù)撍{(diào)查、了解到的每一個信息,為學生的發(fā)展提供充分的土壤和水分,讓他們自己發(fā)揮想象:“從身份證號碼中你能獲得哪些信息呢?”“你能給自己編一個學號嗎?”問題逐層遞進,使學生思維上臺階,也使不同層次學生得到不同的發(fā)展,營造一個培養(yǎng)學生創(chuàng)新思維的空間。這樣做可以使學生真正成為知識的探索者、發(fā)現(xiàn)者和創(chuàng)造者,從而使學生保持一種經(jīng)久不衰的探究心理,形成勇于探索、勇于創(chuàng)新的科學精神,是促使學生可持續(xù)發(fā)展的一種教學活動。
(3)補充題:2008年的奧運會在北京舉行,小明的爸爸決定去北京觀看一些比賽項目,為中國健兒加油。如果坐汽車,每小時行使60千米,4小時可以多少千米?如果坐火車,火車的速度是汽車的2倍,同樣的時間可以行使多少千米?這題的第2個問題中蘊含著兩種解題思路,讓學生說一說、比一比。一種是根據(jù)速度×時間=路程的數(shù)量關(guān)系,先算出變化了的那個因數(shù)是多少,再求積。另一種是根據(jù)一個因數(shù)不變,另一個因數(shù)乘以幾,原來的積也乘以幾解決問題。兩種方法得出的積相同,使學生體會積的變化規(guī)律是客觀存在的普遍規(guī)律?!涸O(shè)計理念』在層次分明,形式多樣的練習中,通過讓學生想一想、填一填、說一說,使學生在規(guī)律的應(yīng)用中逐步加深對積的變化規(guī)律的理解。
設(shè)計意圖:在游戲中鞏固策略,提高學生學習興趣,緩解學習疲勞。這個游戲的“揭密”過程關(guān)注方法的多樣化,讓學生體會列方程的策略和倒推策略之間的聯(lián)系,把新舊知識進行了有機地融合,以培養(yǎng)學生思維的靈活性和發(fā)散性。四、課堂小結(jié) 提升策略提問學生:這節(jié)課你學會了應(yīng)用什么策略解決實際問題?什么類型的題目適合用今天的策略解答?用這樣的策略解決實際問題要注意什么?你還有別的收獲嗎?設(shè)計意圖:突出主題,讓學生總結(jié)本課的學習內(nèi)容和學習重點;同時關(guān)注學生的個性發(fā)展,引導學生進行個性化的總結(jié),體現(xiàn)不同層次的學生對課堂教學的領(lǐng)悟程度。五、課堂作業(yè)列方程解決實際問題,完成練習一4、5兩題。設(shè)計意圖:及時反饋學生學習情況,為后續(xù)教學研究收集寶貴的教學信息。
一、本節(jié)內(nèi)容在教材中所處的地位和作用:本單元是在學生理解了四則運算的意義和學會用字母表示數(shù)的基礎(chǔ)上進行學習的。由學習用字母表示數(shù)到學習方程,是學生又一次接觸初步的代數(shù)思想,這既是對所學四則運算意義和數(shù)量關(guān)系的進一步深化,又是為今后學習代數(shù)知識作準備,在知識銜接上具有重要作用。而這一節(jié)恰好在這一單元之中起著承上啟下的作用。二、 教學目標:1、在具體的活動中,體驗和理解等式的性質(zhì),會用等式的性質(zhì)解簡單的方程。2、結(jié)合有關(guān)黔金絲猴的數(shù)量情況,對學生進行保護珍稀動物方面的教育。3、培養(yǎng)學生的觀察、討論、推理、合作交流能力。三、重點難點:重點:解簡單方程、用方程解決問題。因為方程知識與現(xiàn)實生活聯(lián)系比較緊密,同時是今后學習代數(shù)知識的基礎(chǔ),所以把解簡單方程作為本節(jié)重點。
二、探究交流,引導概括 —— 方程為了培養(yǎng)學生的發(fā)現(xiàn)和抽象概括能力,同時進一步理解方程的意義,我讓學生分組學習,引導他們先找出②20+χ=100,⑥ 3χ=180,⑧100+2χ=3×50像上面三臄?shù)仁降挠泄餐卣?,然后歸納概括什么叫做方程?最后得出:像這樣的含有未知數(shù)的等式,叫做方程。三、討論比較,辨析、概念 —— 等式與方程的關(guān)系為了體現(xiàn)學生的主體性,培養(yǎng)學生的合作意識,同時讓學生在解決問題的過程中得到創(chuàng)造的樂趣。通過四人合作用自己的方法創(chuàng)作 “ 方程 ” 與 “ 等式 ” 的關(guān)系圖,并用自己的話說一說 “ 等式 ” 與 “ 方程 ” 的關(guān)系:方程一定是等式,但等式不一定是方程。四、鞏固深化,拓展思維 —— 練習1 、“做一做”:2、判斷是否方程3、“方程一定是等式,等式也一定是方程”這句話對嗎?4、叫學生用圖來表示等式和方程的關(guān)系。
3.導入新課師:在實際應(yīng)用中,小數(shù)乘法乘得的積往往不需要保留很多的小數(shù)位數(shù),這時可以根據(jù)需要,用“四舍五人法”保留一定的小數(shù)位數(shù),求出積的近似值。(板書課題:積的近似值)設(shè)計意圖:知識的學習過程有一個最近發(fā)展區(qū),通過口算和保留一定位數(shù)的小數(shù)這兩塊復習,可以訓練孩子們的口算技能和喚起用“四舍五入”法求近似數(shù)的方法,為求積的近似數(shù)進行正遷移。二、探索情境問題,形成求積的近似值的方法1.創(chuàng)設(shè)情境問題,并理解題意[多媒體展示:人與狗的嗅覺細胞介紹情境動畫,引出情境問題]人的嗅覺細胞約有0.049億個,狗的嗅覺細胞個數(shù)是人的45倍,狗約有多少個嗅覺細胞?(得數(shù)保留一位小數(shù))師:請同學們自由讀題,并說說已知條件和所求的問題。學情預設(shè):情境問題的已知和所求的問題都很明朗,只要能理解求一個數(shù)的幾倍是多少用乘法計算即可。
這樣讓學生的想象建立在一定的表象基礎(chǔ)上,不是憑空去想像。學生經(jīng)歷了猜測、分析推理,最后再實物驗證的過程。同時,發(fā)展了學生的空間想像力和思維能力。)我繼續(xù)追問:你們能不能想出一個好辦法讓大家知道這究竟是什么物體嗎?這一富有挑戰(zhàn)性的問題,激發(fā)了學生積極主動的去思維。從而探究出解決問題的方法是還要知道另一個面或兩個面的形狀。2、有了練習八第2題做鋪墊,再小組合作完成39頁“做一做”就很容易了,這樣也體現(xiàn)了知識出現(xiàn)的層次性。)為了幫助學生把零散的知識進行歸納梳理,同時培養(yǎng)學生從不同角度欣賞他人的良好心態(tài)。接下來我對應(yīng)用部分進行了小結(jié):我們通過觀察發(fā)現(xiàn)從同一個方向觀察不同形狀的立體圖形,得到的形狀也可能是相同的。因此,我們不能只根據(jù)一個方向看到的形狀就確定是什么立體圖形,只有把不同方向看到的形狀進行綜合,才能進行正確的判斷。我們要全面了解一件事物或一個人也要懂得從不同的角度去觀察、思考,不能片面的看待。
《數(shù)學課程標準》中指出:“學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者和合作者。只是在學生需要時給予恰當?shù)膸椭?。”通過不同形式的習題幫助學生掌握新知。進一步突出本節(jié)課的重難點。尤其是創(chuàng)新題,1、編兩個不同的方程,使方程的解都是ⅹ=6,2、在□中填入合適的數(shù),使等式成立。具有一定的挑戰(zhàn)性.只有當自己的觀點與集體不一致時,才會產(chǎn)生要證實自己思想的欲望,從而激活學生思維的火花.但是提出挑戰(zhàn)并不意味著要難倒學生,而是要激勵學生在學習的過程中不斷地去獲得成功的體驗.學生是學習的主體,只有通過學生自身的”再創(chuàng)造”活動,才能納入其認知結(jié)構(gòu)中,才可能成為有效的知識. 在教與學的活動中,有老師的組織、參與和指導,有同伴的合作、交流與探索。 “授之以魚,不如授之以漁?!彪m只有一字只差,卻是兩種截然不同的教育理念。我選擇后者。這樣既培養(yǎng)了孩子們分析、推理能力和思維的靈活性,又為學生的新知建構(gòu)拓展出更大的空間!