1、如圖,OA、OB是兩條射線,C是OA上一點(diǎn),D、E是OB上兩點(diǎn),則圖中共有 條錢段、它們分別是 ;圖中共有 射線,它們分別是 。2、如果線段AB=5cm,BC=3cm,那么A、C兩點(diǎn)間的距離是 3、(1)用度、分、秒表示48.26° (2)用度表示37°28′24″ 4、從3點(diǎn)到5點(diǎn)30分,時(shí)鐘的時(shí)針轉(zhuǎn)過(guò)了 度。5、一輪船航行到B處測(cè)得小島A的方向?yàn)楸逼?0°,則從A處觀測(cè)此B處的方向?yàn)椋? ) A. 南偏東30° B. 東偏北30° C. 南偏東60° D. 東偏北60°6、已知,OA⊥OC,∠AOB∶∠AOC=2∶3,則∠BOC的度數(shù)為( )A. 30° B. 150° C. 30°或150° D. 不同于上述答案7、如圖,AO⊥OB,直線CD過(guò)點(diǎn)O,且∠BOD=130°,求∠AOD的大小。8、已知:如圖,B、C兩點(diǎn)把線段AD分成2∶4∶3三部分,M是AD的中點(diǎn),CD=6,求:線段MC的長(zhǎng)。9、平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一直線上,經(jīng)過(guò)每?jī)蓚€(gè)點(diǎn)畫(huà)一條直線,一共可以畫(huà)多少條直線?遷移:某足球比賽中有20個(gè)球隊(duì)進(jìn)行單循環(huán)比賽(每?jī)申?duì)之間必須比賽一場(chǎng)),那么一共要進(jìn)行多少場(chǎng)比賽?
一、教學(xué)目標(biāo):1、會(huì)辨認(rèn)基本幾何體(直棱柱、圓柱、圓錐、球等)2、了解直棱柱、圓柱、圓錐的側(cè)面展開(kāi)圖,能根據(jù)展開(kāi)圖判斷和制作立體模型;3、能想象基本幾何體的截面形狀;4、會(huì)畫(huà)基本幾何體的三視圖,會(huì)判斷簡(jiǎn)單物體的三視圖,能根據(jù)三視圖描述幾何體或?qū)嵨镌停?、能從豐富的現(xiàn)實(shí)背景中抽象出空間幾何體和基本平面圖形,進(jìn)一步認(rèn)識(shí)點(diǎn)、線、面。6、獲得一些研究問(wèn)題的方法和經(jīng)驗(yàn),發(fā)展思維能力,加深理解相關(guān)的數(shù)學(xué)知識(shí)。7、體驗(yàn)數(shù)學(xué)知識(shí)之間的內(nèi)在聯(lián)系,初步形成對(duì)數(shù)學(xué)整體性的認(rèn)識(shí)。教學(xué)重點(diǎn):在具體的情境中,認(rèn)識(shí)一些基本的幾何體,并能描述這些幾何體的特征。教學(xué)難點(diǎn):是描述幾何體的特征,對(duì)幾何體進(jìn)行分類。二、設(shè)疑自探1、梳理本章知識(shí)(一)生活中有哪些你熟悉的圖形?舉例說(shuō)明.(二)你喜歡哪些幾何體?舉出一個(gè)生活中的物體,使它盡可能地包含不同的幾何體.(三)用自己的語(yǔ)言說(shuō)一說(shuō)棱柱的特征?(直棱柱)
一天,王村的小明奶奶提著一籃子土豆去換蘋(píng)果,雙方商定的結(jié)果是:1千克土豆換0.5千克蘋(píng)果.當(dāng)稱完帶籃子的土豆重量后,攤主對(duì)小明奶奶說(shuō):“別稱籃子的重量了,稱蘋(píng)果時(shí)也帶籃子稱,這樣既省事又互不吃虧.”你認(rèn)為攤主的話有道理嗎?請(qǐng)你用所學(xué)的有關(guān)數(shù)學(xué)知識(shí)加以判定.解析:要看攤主說(shuō)得有沒(méi)有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋(píng)果的重量,比較即可.解:設(shè)土豆重a千克,籃子重b千克,則應(yīng)換蘋(píng)果0.5a千克.若不稱籃子,則實(shí)換蘋(píng)果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋(píng)果0.5b千克.所以攤主說(shuō)得沒(méi)有道理,這樣做小明奶奶吃虧了.方法總結(jié):體現(xiàn)了數(shù)學(xué)在生活中的運(yùn)用.解決問(wèn)題的關(guān)鍵是讀懂題意,找到所求的量之間的關(guān)系.三、板書(shū)設(shè)計(jì)數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實(shí)際,本節(jié)課從實(shí)際問(wèn)題入手,引出合并同類項(xiàng)的概念.通過(guò)獨(dú)立思考、討論交流等方式歸納出合并同類項(xiàng)的法則,通過(guò)例題教學(xué)、練習(xí)等方式鞏固相關(guān)知識(shí).教學(xué)中應(yīng)激發(fā)學(xué)生主動(dòng)參與學(xué)習(xí)的積極性,培養(yǎng)學(xué)生思維的靈活性.
方法總結(jié):由絕對(duì)值的定義可知,一個(gè)數(shù)的絕對(duì)值越小,離原點(diǎn)越近.將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,即為與標(biāo)準(zhǔn)質(zhì)量的差的絕對(duì)值越小,越接近標(biāo)準(zhǔn)質(zhì)量.【類型四】 絕對(duì)值的非負(fù)性已知|x-3|+|y-2|=0,求x+y的值.解析:一個(gè)數(shù)的絕對(duì)值總是大于或等于0,即為非負(fù)數(shù),若兩個(gè)非負(fù)數(shù)的和為0,則這兩個(gè)數(shù)同為0.解:由題意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法總結(jié):幾個(gè)非負(fù)數(shù)的和為0,則這幾個(gè)數(shù)都為0.三、板書(shū)設(shè)計(jì)絕對(duì)值相反數(shù)絕對(duì)值性質(zhì)→|a|=a(a>0)0(a=0)-a(a<0)互為相反數(shù)的兩個(gè)數(shù)的絕對(duì)值相等兩個(gè)負(fù)數(shù)比較大?。航^對(duì)值大的反而小絕對(duì)值這個(gè)名詞既陌生,又是一個(gè)不易理解的數(shù)學(xué)術(shù)語(yǔ),是本章的重點(diǎn)內(nèi)容,同時(shí)也是一個(gè)難點(diǎn)內(nèi)容.教材從幾何的角度給出絕對(duì)值的概念,也就是從數(shù)軸上表示數(shù)的點(diǎn)的位置出發(fā),得出定義的.
根據(jù)題意,得34%x-18%x=160,解得x=1000.所以48%x=48%×1000=480(公頃),18%x=18%×1000=180(公頃),34%x=34%×1000=340(公頃).答:玉米種了340公頃,高粱種了180公頃,水稻種了480公頃.方法總結(jié):從扇形統(tǒng)計(jì)圖中獲取正確的信息是解題的關(guān)鍵.語(yǔ)文老師對(duì)班上學(xué)生的課外閱讀情況做了調(diào)查,并請(qǐng)數(shù)學(xué)老師制作了如圖所示的統(tǒng)計(jì)圖.(1)哪種書(shū)籍最受歡迎?(2)哪兩種書(shū)籍受歡迎程度差不多?(3)圖中扇形分別表示什么?(4)圖中的各個(gè)百分比如何得到?所有的百分比之和是多少?解:(1)科幻書(shū)籍最受歡迎,可從扇形的大小或圖中百分比的大小得出.(2)科普書(shū)籍和武俠書(shū)籍受歡迎程度差不多,可從圖中扇形大小或圖中所標(biāo)百分比的大小得出.(3)圖中扇形分別代表了最喜歡某種書(shū)籍的人數(shù)占全班人數(shù)的百分比.(4)用最喜歡某種書(shū)籍的人數(shù)比全班的總?cè)藬?shù)即可得各個(gè)百分比,所有的百分比之和為1.方法總結(jié):由扇形統(tǒng)計(jì)圖獲取信息時(shí),一定要明確各個(gè)項(xiàng)目和它們所占圓面的百分比.
方法總結(jié):利用三角形三邊的數(shù)量關(guān)系來(lái)判定直角三角形,從而推出兩線的垂直關(guān)系.探究點(diǎn)二:勾股數(shù)下列幾組數(shù)中是勾股數(shù)的是________(填序號(hào)).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數(shù)的定義,不是勾股數(shù);第③④組不是正整數(shù),不是勾股數(shù);只有第②組的9,40,41是勾股數(shù).故填②.方法總結(jié):判斷勾股數(shù)的方法:必須滿足兩個(gè)條件:一要符合等式a2+b2=c2;二要都是正整數(shù).三、板書(shū)設(shè)計(jì)勾股定理的逆定理: 如果一個(gè)三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形.勾股數(shù):滿足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力、歸納能力.體驗(yàn)生活中數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣.
解析:從各點(diǎn)的位置可以發(fā)現(xiàn)A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細(xì)觀察每四個(gè)點(diǎn)的橫、縱坐標(biāo),發(fā)現(xiàn)存在著一定規(guī)律性.因?yàn)?015=503×4+3,所以點(diǎn)A2015在第二象限,縱坐標(biāo)和橫坐標(biāo)互為相反數(shù),所以A2015的坐標(biāo)為(-504,504).故填(-504,504).方法總結(jié):解決此類題常用的方法是通過(guò)對(duì)幾種特殊情況的研究,歸納總結(jié)出一般規(guī)律,再根據(jù)一般規(guī)律探究特殊情況.三、板書(shū)設(shè)計(jì)軸對(duì)稱與坐標(biāo)變化關(guān)于坐標(biāo)軸對(duì)稱作圖——軸對(duì)稱變換通過(guò)本課時(shí)的學(xué)習(xí),學(xué)生經(jīng)歷圖形坐標(biāo)變化與圖形的軸對(duì)稱之間的關(guān)系的探索過(guò)程,掌握空間與圖形的基礎(chǔ)知識(shí)和基本作圖技能,豐富對(duì)現(xiàn)實(shí)空間及圖形的認(rèn)識(shí),建立初步的空間觀念,發(fā)展形象思維,激發(fā)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.教學(xué)過(guò)程中學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),積極交流合作,體驗(yàn)數(shù)學(xué)活動(dòng)的樂(lè)趣.
證法二:(1)延長(zhǎng)BD交AC于E(或延長(zhǎng)CD交AB于E),如圖.則∠BDC是△CDE的一個(gè)外角.∴∠BDC>∠DEC.(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個(gè)外角(已作)∴∠DEC>∠A(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長(zhǎng)BD交AC于E,則∠BDC是△DCE的一個(gè)外角.∴∠BDC=∠C+∠DEC(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∵∠DEC是△ABE的一個(gè)外角∴∠DEC=∠A+∠B(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動(dòng)目的:讓學(xué)生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學(xué)生的證明思路,特別是不等關(guān)系的證明題,因?yàn)閷W(xué)生接觸較少,因此更需要加強(qiáng)練習(xí).注意事項(xiàng):學(xué)生對(duì)于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學(xué)生找到一個(gè)過(guò)渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法總結(jié):本題是線段垂直平分線的性質(zhì)和角平分線的性質(zhì)的綜合,掌握它們的適用條件和表示方法是解題的關(guān)鍵.三、板書(shū)設(shè)計(jì)1.角平分線的性質(zhì)定理角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.2.角平分線的判定定理在一個(gè)角的內(nèi)部,到角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上.本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對(duì)角以及角平分線的性質(zhì)的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問(wèn)題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練.
探究點(diǎn)二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點(diǎn),求證:∠BPC>∠A.解析:由題意無(wú)法直接得出∠BPC>∠A,延長(zhǎng)BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長(zhǎng)BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時(shí),兩個(gè)角應(yīng)是同一個(gè)三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書(shū)設(shè)計(jì)三角形的外角外角:三角形的一邊與另一邊的延長(zhǎng)線所組成的 角,叫做三角形的外角推論1:三角形的一個(gè)外角等于和它不相鄰的兩 個(gè)內(nèi)角的和推論2:三角形的一個(gè)外角大于任何一個(gè)和它不 相鄰的內(nèi)角利用已經(jīng)學(xué)過(guò)的知識(shí)來(lái)推導(dǎo)出新的定理以及運(yùn)用新的定理解決相關(guān)問(wèn)題,進(jìn)一步熟悉和掌握證明的步驟、格式、方法、技巧.進(jìn)一步培養(yǎng)學(xué)生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強(qiáng)化基礎(chǔ),激發(fā)學(xué)習(xí)興趣.
方法總結(jié):平行線與角的大小關(guān)系、直線的位置關(guān)系是緊密聯(lián)系在一起的.由兩直線平行的位置關(guān)系得到兩個(gè)相關(guān)角的數(shù)量關(guān)系,從而得到相應(yīng)角的度數(shù).探究點(diǎn)四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關(guān)鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結(jié)論.已知AB∥CD,但沒(méi)有一條直線既與AB相交,又與CD相交,所以需要作輔助線構(gòu)造同位角、內(nèi)錯(cuò)角或同旁內(nèi)角,但是又要保證原有條件和結(jié)論的完整性,所以需要過(guò)點(diǎn)E作AB的平行線.證明:如圖所示,過(guò)點(diǎn)E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質(zhì)),即∠B+∠BED+∠D=360°.方法總結(jié):過(guò)一點(diǎn)作一條直線或線段的平行線是我們常作的輔助線.
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯(cuò)角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補(bǔ),兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測(cè)結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ))來(lái)說(shuō)明兩直線平行.若沒(méi)有公共截線,則需作出兩直線的截線輔助證明.三、板書(shū)設(shè)計(jì)平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯(cuò)角相等,兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行本節(jié)課通過(guò)經(jīng)歷探索平行線的判定方法的過(guò)程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
(1)用簡(jiǎn)潔明快的語(yǔ)言概括大意,不能超過(guò)200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個(gè),且要分別涉及時(shí)間、路和速度這三個(gè)量.意圖:旨在檢測(cè)學(xué)生的識(shí)圖能力,可根據(jù)學(xué)生情況和上課情況適當(dāng)調(diào)整。說(shuō)明:練習(xí)注意了問(wèn)題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對(duì)同學(xué)的回答,教師給予點(diǎn)評(píng),對(duì)回答問(wèn)題暫時(shí)有困難的同學(xué),教師應(yīng)幫助他們樹(shù)立信心。第四環(huán)節(jié):課時(shí)小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運(yùn)用一次函數(shù)解決實(shí)際問(wèn)題時(shí),可以直接從函數(shù)圖象上獲取信息解決問(wèn)題,當(dāng)然也可以設(shè)法得出各自對(duì)應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過(guò)計(jì)算解決問(wèn)題。通過(guò)列出關(guān)系式解決問(wèn)題時(shí),一般首先判斷關(guān)系式的特征,如兩個(gè)變量之間是不是一次函數(shù)關(guān)系?當(dāng)確定是一次函數(shù)關(guān)系時(shí),可求出函數(shù)解析式,并運(yùn)用一次函數(shù)的圖象和性質(zhì)進(jìn)一步求得我們所需要的結(jié)果.
2. 在彈性限度內(nèi),彈簧的長(zhǎng)度y(厘米)是所掛物體質(zhì)量x(千克)的一次函數(shù).當(dāng)所掛物體的質(zhì)量為1千克時(shí)彈簧長(zhǎng)15厘米;當(dāng)所掛物體的質(zhì)量為3千克時(shí),彈簧長(zhǎng)16厘米.寫(xiě)出y與x之間的函數(shù)關(guān)系式,并求當(dāng)所掛物體的質(zhì)量為4千克時(shí)彈簧的長(zhǎng)度.答案: 當(dāng)x=4是,y= 3. 教材例2的再探索:我邊防局接到情報(bào),近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對(duì)于海岸的距離s(海里)與追趕時(shí)間t(分)之間的關(guān)系.當(dāng)時(shí)間t等于多少分鐘時(shí),我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(jié)(2分鐘,教師引導(dǎo)學(xué)生總結(jié))內(nèi)容:一、函數(shù)與方程之間的關(guān)系.二、在解決實(shí)際問(wèn)題時(shí)從不同角度思考問(wèn)題,就會(huì)得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式: ;2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個(gè)二元一次方程組得k,b,進(jìn)而得到一次函數(shù)的表達(dá)式.
學(xué)習(xí)目標(biāo)1.掌握兩個(gè)一次函數(shù)圖像的應(yīng)用;(重點(diǎn))2.能利用函數(shù)圖象解決實(shí)際問(wèn)題。(難點(diǎn))教學(xué)過(guò)程一、情景導(dǎo)入在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(厘米)與燃燒時(shí)間x(小時(shí))之間的關(guān)系如圖所示.請(qǐng)你根據(jù)圖象所提供的信息回答下列問(wèn)題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點(diǎn)燃到燃盡所用的時(shí)間分別是 小時(shí)、 小時(shí).你會(huì)解答上面的問(wèn)題嗎?學(xué)完本解知識(shí),相信你能很快得出答案。二、 合作探究探究點(diǎn)一:兩個(gè)一次函數(shù)的應(yīng)用(2015?日照模擬)自來(lái)水公司有甲、乙兩個(gè)蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個(gè)蓄水池中水的深度y(米)與注水時(shí)間x(時(shí))之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問(wèn)題.(1)分別求出甲、乙兩個(gè)蓄水池中水的深度y與注水時(shí)間x之間的函數(shù)表達(dá)式;(2)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水池水的深度相同;(3)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水的池蓄水量相同;
四個(gè)不同類型的問(wèn)題由淺入深,學(xué)生能從不同角度掌握求一次函數(shù)的方法.對(duì)于問(wèn)題4,教師可引導(dǎo)學(xué)生分析,并教學(xué)生要學(xué)會(huì)畫(huà)圖,利用圖象分析問(wèn)題,體會(huì)數(shù)形結(jié)合方法的重要性.學(xué)生若出現(xiàn)解題格式不規(guī)范的情況,教師應(yīng)糾正并給予示范,訓(xùn)練學(xué)生規(guī)范答題的習(xí)慣.第五環(huán)節(jié)課時(shí)小結(jié)內(nèi)容:總結(jié)本課知識(shí)與方法1.本節(jié)課主要學(xué)習(xí)了怎樣確定一次函數(shù)的表達(dá)式,在確定一次函數(shù)的表達(dá)式時(shí)可以用待定系數(shù)法,即先設(shè)出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問(wèn)題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設(shè)函數(shù)表達(dá)式;(2)根據(jù)已知條件列出有關(guān)k,b的方程;(3)解方程,求k,b;4.把k,b代回表達(dá)式中,寫(xiě)出表達(dá)式.2.本節(jié)課用到的主要的數(shù)學(xué)思想方法:數(shù)形結(jié)合、方程的思想.目的:引導(dǎo)學(xué)生小結(jié)本課的知識(shí)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習(xí)題4.5:1,2,3,4目的:進(jìn)一步鞏固當(dāng)天所學(xué)知識(shí)。教師也可根據(jù)學(xué)生情況適當(dāng)增減,但難度不應(yīng)過(guò)大.
四、教學(xué)設(shè)計(jì)反思這節(jié)內(nèi)容是學(xué)生利用數(shù)形結(jié)合的思想去研究正比例函數(shù)的圖象,對(duì)函數(shù)與圖象的對(duì)應(yīng)關(guān)系有點(diǎn)陌生.在教學(xué)過(guò)程中教師應(yīng)通過(guò)情境創(chuàng)設(shè)激發(fā)學(xué)生的學(xué)習(xí)興趣,對(duì)函數(shù)與圖象的對(duì)應(yīng)關(guān)系應(yīng)讓學(xué)生動(dòng)手去實(shí)踐,去發(fā)現(xiàn),對(duì)正比例函數(shù)的圖象是一條直線應(yīng)讓學(xué)生自己得出.在得出結(jié)論之后,讓學(xué)生能運(yùn)用“兩點(diǎn)確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習(xí)活動(dòng)中,鼓勵(lì)學(xué)生積極思考,提高學(xué)生解決實(shí)際問(wèn)題的能力.當(dāng)然,根據(jù)學(xué)生狀況,教學(xué)設(shè)計(jì)也應(yīng)做出相應(yīng)的調(diào)整。如第一環(huán)節(jié):創(chuàng)設(shè)情境 引入課題,固然可以激發(fā)學(xué)生興趣,但也可能容易讓學(xué)生關(guān)注代數(shù)表達(dá)式的尋求,甚至對(duì)部分學(xué)生形成一定的認(rèn)知障礙,因此該環(huán)節(jié)也可以直接開(kāi)門見(jiàn)山,直入主題,如提出問(wèn)題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個(gè)正比例函數(shù)對(duì)應(yīng)的圖形具有什么特征呢?
本節(jié)課開(kāi)始時(shí),首先由一個(gè)要在一塊長(zhǎng)方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個(gè)二次根式求和的運(yùn)算。從而提出問(wèn)題:如何進(jìn)行二次根式的加減運(yùn)算?這樣通過(guò)問(wèn)題指向本課研究的重點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣和強(qiáng)烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運(yùn)算法則,在設(shè)計(jì)本課時(shí)教案時(shí),著重從以下幾點(diǎn)考慮:1.先通過(guò)對(duì)實(shí)際問(wèn)題的解決來(lái)引入二次根式的加減運(yùn)算,再由學(xué)生自主討論并總結(jié)二次根式的加減運(yùn)算法則。2.四人小組探索、發(fā)現(xiàn)、解決問(wèn)題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實(shí)際問(wèn)題的能力。3.對(duì)法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運(yùn)用二次根式的加減法運(yùn)算法則的學(xué)習(xí)過(guò)程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。
1.關(guān)于二次根式的概念,要注意以下幾點(diǎn):(1)從形式上看,二次根式是以根號(hào)“ ”表示的代數(shù)式,這里的開(kāi)方運(yùn)算是最后一步運(yùn)算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運(yùn)算;(2)當(dāng)一個(gè)二次根式前面乘有一個(gè)有理數(shù)或有理式(整式或分式)時(shí),雖然最后運(yùn)算不是開(kāi)方而是乘法,但為了方便起見(jiàn),我們把它看作一個(gè)整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開(kāi)方數(shù),可以是某個(gè)確定的非負(fù)實(shí)數(shù),也可以是某個(gè)代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負(fù)實(shí)數(shù);(4)像“ , ”等雖然可以進(jìn)行開(kāi)方運(yùn)算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
屬于此類問(wèn)題一般有以下三種情況①具體數(shù)字,此時(shí)化簡(jiǎn)的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡(jiǎn)。當(dāng)題目中給定的條件不能判定絕對(duì)值符號(hào)內(nèi)代數(shù)式值的符號(hào)時(shí),則需討論后化簡(jiǎn),如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號(hào),又∵a+b=-6<0,∴a<0,b<0∴ .說(shuō)明:此題中的隱含條件a<0,b<0不能忽視。否則會(huì)出現(xiàn)錯(cuò)誤。例4.化簡(jiǎn): 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個(gè)區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時(shí),原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時(shí),原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時(shí),原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時(shí),原式=-(x-6)+(1+2x)-(x+5)=2.說(shuō)明:利用公式 ,如果絕對(duì)值符號(hào)里面的代數(shù)式的值的符號(hào)無(wú)法決定,則需要討論。方法是:令每一個(gè)絕對(duì)值內(nèi)的代數(shù)式為零,求出對(duì)應(yīng)的“零點(diǎn)”,再用這些“零點(diǎn)”把數(shù)軸分成若干個(gè)區(qū)間,再在每個(gè)區(qū)間內(nèi)進(jìn)行化簡(jiǎn)。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。