此題的設計目的:及時的練習一是起到鞏固新知識的目的,二是及時了解學生掌握新知識的情況,起到反饋的目的。這樣設計的依據是:小題多,是讓更多的學生參與到學習中來,及時給予他們更正,更多的是對他們的鼓勵和表揚,有簡單的題盡量讓基礎不太好的的學生去說,以讓他們感受到成功的樂趣;并且《新課標》中指出課程內容應處于學生“最近發(fā)展區(qū)”的范圍以內,讓成功始終伴隨學生學習的旅程,以保證學生不會因過多的失敗而放棄他們的努力,失去發(fā)展的機會。第四環(huán)節(jié):師生合作,歸納總結。先由學生個人總結,然后教師補充。設計目的:通過學生個人小結,教師可以了解學生掌握知識的情況,培養(yǎng)學生總結概括的能力,教師補充起到完善所學知識的目的。第五環(huán)節(jié):布置作業(yè),鞏固提高。設計目的:因材施“作業(yè)”,分層次布置作業(yè),減輕學生的負擔,全面推行素質教育,讓學生學有用的數學,不同的學生學習不同的數學,在數學中得到不同的發(fā)展,以求彰顯學生的個性。
通過以上例題幫助學生總結出分式乘除法的運算步驟(當分式的分子與分母都是單項式時和當分式的分子、分母中有多項式兩種情況)4、隨堂練習。(約5分鐘)76頁第一題,共3個小題。教學效果:在總結出分式乘除法的運算步驟后,大部分學生能很好的掌握,但是還有些學生忘記運算結果要化成最簡形式,老師要及時提醒學生。 分解因式的知識沒掌握好,將會影響到分式的運算,所以有的學生有必要復習和鞏固一下分解因式的知識。5、數學理解(約5分鐘)教材77頁的數學理解,學生很容易出現像小明那樣的錯誤。但是也很容易找出錯誤的原因。補充例3 計算(xy-x2)÷ ? 教學效果:鞏固分式乘除法法則,掌握分式乘除法混合運算的方法。提醒學生,負號要提到分式前面去。6、課堂小結(約3分鐘)先學生分組小結,在全班交流,最后老師總結。
一、說教材《分式的加減法》是本冊教材第三章《分式》重要內容,是進一步學習分式方程、反比例函數以及其它數學知識的基礎,同時也是學習物理、化學等學科不可缺少的工具。與其它數學知識一樣,它在實際生活中有著廣泛的應用。學習分式的加減法并熟練地進行運算是學好分式運算的關鍵,為學生綜合運用多種運算法則拓寬了空間,有利于學生對雙基的掌握,在綜合運用多種運算法則的過程中,逐漸形成運算能力。同時本節(jié)課的教學難度有所增加,學生通過觀察、類比、猜想、嘗試等一系列思維活動中,發(fā)現規(guī)則、理解規(guī)則、應用規(guī)則??紤]到以上這些因素,確定本節(jié)課的目標和重點、難點如下:(一)說教學目標:1.知識與技能目標:理解并掌握異分母分式加減法的法則;經歷異分母分式的加減運算和通分的過程,訓練學生的分式運算能力,培養(yǎng)學生在學習中轉化未知問題為已知問題的能力;進一步通過實例發(fā)展學生的符號感。
解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結:解決此類問題的關鍵是先進行數學建模,將實際問題中的條件轉化為數學問題中的條件.常有兩個步驟:(1)根據題意得出二次函數的關系式,將實際問題轉化為純數學問題;(2)應用有關函數的性質作答.
教學目標:1.知道二次函數與一元二次方程的聯系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結合函數圖象求方程的根.教學重點:二次函數與一元二次方程的聯系.預設難點:用二次函數與一元二次方程的關系綜合解題.☆ 預習導航 ☆一、鏈接:1.畫一次函數y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關系2.不解方程3x2-2x+4=0,此方程有 個根。二、導讀畫二次函數y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關系?(3)一元二次方程ax2+bx+c=0是二次函數y=ax2+bx+c當函數值y=0時的特殊情況.二次函數y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關系?
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據對稱軸是x=-3,求出b=6,即可得出答案;(2)根據CD∥x軸,得出點C與點D關于x=-3對稱,根據點C在對稱軸左側,且CD=8,求出點C的橫坐標和縱坐標,再根據點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關于x=-3對稱.∵點C在對稱軸左側,且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結:此題考查了待定系數法求二次函數的解析式以及二次函數的圖象和性質,注意掌握數形結合思想與方程思想的應用.
(8)物價部門規(guī)定,此新型通訊產品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經營某種品牌的童裝,購進時的單價是60元.根據市場調查,銷售量y(件)與銷售單價x(元)之間的函數關系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數關系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,那么商場銷售該品牌童裝獲得的最大利潤是多少元?
③設每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結得出求最值問題的一般步驟:(1)列出二次函數的解析式,并根據自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內,運用公式法或通過配方法求出二次函數的最值?!? 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設矩形面積是ym2,,則y與x之間函數關系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數,即可求得函數的解析式;(2)利用(1)得到的兩個解析式,結合二次函數與一次函數的性質分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結:本題考查了二次函數的應用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數,是解決問題的關鍵.
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數y=ax2+bx+c的最值已知二次函數y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結:求二次函數的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練” 第1題探究點二:利用二次函數求圖形面積的最大值【類型一】 利用二次函數求矩形面積的最大值
解析:(1)由切線的性質得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結:運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.
一、教學目標:1. 體會燕子過海的艱辛和艱難,懂得要愛護益鳥燕子。2. 運用前兩課學到的理解句子意思的方法,讀懂描寫燕子過海不怕辛苦、艱難和寫水手們對待蒸子的態(tài)度的句子。3. 能有感情地朗讀課文。二、教學重點和難點:理解課文中描寫燕子過海時非常辛苦、艱難的句子。三、教學過程:(一)啟發(fā)談話,揭題。同學們,你們見過燕子嗎?請你向大家介紹一下燕子,好嗎?(燕子是益鳥。燕子是候鳥。燕子的羽毛是黑色的,燕子的尾巴像剪刀。)你們說得真不錯,誰能告訴我,燕子大概有多大?(學生用手比劃)那么,誰見過海?海有多大?(海很大,天連水,水連天,望也望不到邊。)誰能用一個詞說說“天連水,水連天”的意思?(一望無邊、一望無際、無邊無際)誰能用手比劃一下海有多大?確實比不出,這么小的燕子,要過天連水,水連天,一望無際的大??烧媪瞬黄?!你們看見過燕子過海嗎?有一艘軍艦上的海軍戰(zhàn)士看見了過海的燕子,于是他們給我們寫下了這篇文章《燕子過海》。教師范讀(二)學生質疑。讀了這篇課文你有什么問題呢?(燕子為什么要過海?為什么它要不分晝夜地飛?為什么像雨點一樣落下來?)
探究點二:三角形內角和定理的推論2如圖,P是△ABC內的一點,求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結:利用推論2證明角的大小時,兩個角應是同一個三角形的內角和外角.若不是,就需借助中間量轉化求證.三、板書設計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內角利用已經學過的知識來推導出新的定理以及運用新的定理解決相關問題,進一步熟悉和掌握證明的步驟、格式、方法、技巧.進一步培養(yǎng)學生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強化基礎,激發(fā)學習興趣.
證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內角)∴∠BDC>∠A(不等式的性質)(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內角的和)∵∠DEC是△ABE的一個外角∴∠DEC=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動目的:讓學生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學生的證明思路,特別是不等關系的證明題,因為學生接觸較少,因此更需要加強練習.注意事項:學生對于幾何圖形中的不等關系的證明比較陌生,因此有必要在證明第2小題中,要引導學生找到一個過渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關系的傳遞性得出∠1>∠2。
方法總結:利用三角形三邊的數量關系來判定直角三角形,從而推出兩線的垂直關系.探究點二:勾股數下列幾組數中是勾股數的是________(填序號).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數的定義,不是勾股數;第③④組不是正整數,不是勾股數;只有第②組的9,40,41是勾股數.故填②.方法總結:判斷勾股數的方法:必須滿足兩個條件:一要符合等式a2+b2=c2;二要都是正整數.三、板書設計勾股定理的逆定理: 如果一個三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.勾股數:滿足a2+b2=c2的三個正整數,稱為勾股數.經歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力、歸納能力.體驗生活中數學的應用價值,感受數學與人類生活的密切聯系,激發(fā)學生學數學、用數學的興趣.
8.一束光線從點A(3,3)出發(fā),經過y軸上點C反射后經過點B(1,0)則光線從A點到B點經過的路線長是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結1、關于y軸對稱的兩個圖形上點的坐標特征:(x , y)——(- x , y)2、關于x軸對稱的兩個圖形上點的坐標特征:(x , y)——(x , - y)3、關于原點對稱的兩個圖形上點的坐標特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習題3.5 1,2,3四、 教學反思通過“坐標與軸對稱”,經歷圖形坐標變化與圖形的軸對稱之間的關系的探索過程, 掌握空間與圖形的基礎知識和基本技能,豐富對現實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)學生對數學學習的好奇心與求知欲,學生能積極參與數學學習活動;積極交流合作,體驗數學活動充滿著探索與創(chuàng)造。教學中務必給學生創(chuàng)造自主學習與合作交流的機會,留給學生充足的動手機會和思考空間,教師不要急于下結論。事先一定要準備好坐標紙等,提高課堂效率。
解析:從各點的位置可以發(fā)現A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細觀察每四個點的橫、縱坐標,發(fā)現存在著一定規(guī)律性.因為2015=503×4+3,所以點A2015在第二象限,縱坐標和橫坐標互為相反數,所以A2015的坐標為(-504,504).故填(-504,504).方法總結:解決此類題常用的方法是通過對幾種特殊情況的研究,歸納總結出一般規(guī)律,再根據一般規(guī)律探究特殊情況.三、板書設計軸對稱與坐標變化關于坐標軸對稱作圖——軸對稱變換通過本課時的學習,學生經歷圖形坐標變化與圖形的軸對稱之間的關系的探索過程,掌握空間與圖形的基礎知識和基本作圖技能,豐富對現實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)數學學習的好奇心與求知欲.教學過程中學生能積極參與數學學習活動,積極交流合作,體驗數學活動的樂趣.
2. 學唱歌詞先聽琴跟唱歌詞,再分句解決難點:重難點:(1). 第一段中弱拍休止符的地方。(2). 附點四分音符:第一第二句的“總”, 第三句的“為”和第四句的“飄”;附點八分音符:第一第二句的“暖”,第三第四句的“總”。(3). 區(qū)分第二遍歌詞和第一遍歌詞在節(jié)奏上的不同之處。(4). 結束句三拍休止符。3. 完整的有表情地演唱歌曲。(三)、拓展通過欣賞邰麗華等聾啞人跳的舞蹈《千手觀音》,來教育學生學習殘疾人刻苦努力、奮發(fā)圖強的精神;通過欣賞愛心人士的捐助圖片,教育學生要幫助和幫助關心我們身邊的殘疾人?。ㄋ模⒖偨Y老師總結:無數個小愛匯成一個大愛,讓我們在愛的人間里生活的更加美好,最后讓我們再次充滿感情地唱出這首愛的贊歌,在歌聲中結束本課!
最終使這節(jié)音樂課在這種快樂的氛圍中結束,就像本課的歌曲迷人的火塘一樣,那種迷人的情境永遠留在我們的心中。這是課的結束部分,通過表演已學的民族歌舞與器樂演奏來鞏固舊知,使主題突出,情感升華。(四)、小結:這節(jié)課我們來到了美麗的貴州,學習了一首具有鮮明的侗族民歌音調特征的創(chuàng)作歌曲,并了解了一些侗族的風土人情。通過今天的學習與感受,希望同學們能主動多了解些我國各民族的人文知識。為實現我們中華民族的偉大復興而努力學習。五.教學反思本節(jié)課主要以一三四教學模式為教學方向,努力做到人人參與,小組合作,以學生為主,指導學生學習歌曲并從淺入深的讓學生掌握歌曲的旋律。本節(jié)課環(huán)節(jié)過多,在時間分配上要注意,著重點要分清主次,有的環(huán)節(jié)也應該取舍得當。同時這使我明白了實踐出真知的道理。我會繼續(xù)努力的!
5. 跟著范唱,完整地唱好全歌7. .以自豪的情感跟著伴奏帶唱好京歌《我是中國人》。(音樂教育以審美為核心,主要作用于人的情感世界,使學生充分體驗蘊涵于音樂音響形式中的美和豐富的情感,為音樂所表達的真善美理想境界所吸引、所陶醉,與之產生強烈的情感共鳴,使音樂藝術凈化心靈、陶冶情操,以利于學生養(yǎng)成健康、高尚的審美情趣和積極樂觀的生活態(tài)度。)8.鼓勵學生單獨演唱,師生共同評價,鍛煉學生能夠對自己和他人的演唱作簡單評價。三、表演唱。因為戲歌和戲曲是分不開得,所以我向學生講解戲曲中跑圓場這個動作,并輔導學生表演,用于歌曲的前奏。作為本科知識的延續(xù),拓展學生的知識面,用戲歌作為學生走進戲曲的敲門磚。最后教師提出希望,鼓勵學生從唱戲歌開始,慢慢地去了解戲曲,學習戲曲,敲開戲曲藝術的大門。