提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

部編版語(yǔ)文九年級(jí)上冊(cè)《就英法聯(lián)軍遠(yuǎn)征中國(guó)致巴特勒上尉的信》教案

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)垂徑定理教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)垂徑定理教案

    方法總結(jié):垂徑定理雖是圓的知識(shí),但也不是孤立的,它常和三角形等知識(shí)綜合來(lái)解決問(wèn)題,我們一定要把知識(shí)融會(huì)貫通,在解決問(wèn)題時(shí)才能得心應(yīng)手.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第2題【類型三】 動(dòng)點(diǎn)問(wèn)題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個(gè)動(dòng)點(diǎn),求OP的長(zhǎng)度范圍.解析:當(dāng)點(diǎn)P處于弦AB的端點(diǎn)時(shí),OP最長(zhǎng),此時(shí)OP為半徑的長(zhǎng);當(dāng)OP⊥AB時(shí),OP最短,利用垂徑定理及勾股定理可求得此時(shí)OP的長(zhǎng).解:作直徑MN⊥弦AB,交AB于點(diǎn)D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長(zhǎng),∴OP的長(zhǎng)度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長(zhǎng)、最短時(shí)的情況,靈活利用垂徑定理求解.容易出錯(cuò)的地方是不能確定最值時(shí)的情況.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)第一章復(fù)習(xí)教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)第一章復(fù)習(xí)教案

    一、本章知識(shí)要點(diǎn): 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點(diǎn)又是理解本章知識(shí)的關(guān)鍵,而且也是本章知識(shí)的難點(diǎn)。如何解決這一關(guān)鍵問(wèn)題,教材采取了以下的教學(xué)步驟:1. 從實(shí)際中提出問(wèn)題,如修建揚(yáng)水站的實(shí)例,這一實(shí)例可歸結(jié)為已知RtΔ的一個(gè)銳角和斜邊求已知角的對(duì)邊的問(wèn)題。顯然用勾股定理和直角三角形兩個(gè)銳角互余中的邊與邊或角與角的關(guān)系無(wú)法解出了,因此需要進(jìn)一步來(lái)研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識(shí),以含30°、45°的直角三角形為例:揭示了直角三角形中一個(gè)銳角確定為30°時(shí),那么這角的對(duì)邊與斜邊之比就確定比值為1:2。

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)2教案

    4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問(wèn)題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)? (各有1個(gè))(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來(lái)表示的)(4)本章導(dǎo)圖中的問(wèn)題以及P1頁(yè)的問(wèn)題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線長(zhǎng)定理教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線長(zhǎng)定理教案

    (3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問(wèn)題的結(jié)論有兩種可能,所以具有開(kāi)放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓教案

    解析:首先求得圓的半徑長(zhǎng),然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無(wú)線電信號(hào)發(fā)射塔.已知,該發(fā)射塔發(fā)射的無(wú)線電信號(hào)的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時(shí).(1)當(dāng)客車從A城出發(fā)開(kāi)往C城時(shí),某人立即打開(kāi)無(wú)線電收音機(jī),客車行駛了0.5小時(shí)的時(shí)候,接收信號(hào)最強(qiáng).此時(shí),客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號(hào)越強(qiáng))?(2)客車從A城到C城共行駛2小時(shí),請(qǐng)你判斷到C城后還能接收到信號(hào)嗎?請(qǐng)說(shuō)明理由.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)正切與坡度2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)正切與坡度2教案

    教學(xué)目標(biāo):1、理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。2、了解計(jì)算一個(gè)銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。教學(xué)難點(diǎn):計(jì)算一個(gè)銳角的正切值的方法。教學(xué)過(guò)程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計(jì)了多種形式的臺(tái)階。下列圖中的兩個(gè)臺(tái)階哪個(gè)更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個(gè)臺(tái)階抽象地看成兩個(gè)三角形答:圖 的臺(tái)階更陡,理由 二、探索活動(dòng)1、思考與探索一:除了用臺(tái)階的傾斜角度大小外,還可以如何描述臺(tái)階的傾斜程度呢?① 可通過(guò)測(cè)量BC與AC的長(zhǎng)度,② 再算出它們的比,來(lái)說(shuō)明臺(tái)階的傾斜程度。(思考:BC與AC長(zhǎng)度的比與臺(tái)階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說(shuō)出你的理由嗎?答:________________________.2、思考與探索二:

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)1教案

    (2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問(wèn)題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書(shū)設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問(wèn)題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見(jiàn)的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問(wèn)題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過(guò)實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問(wèn)題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過(guò)程中,讓學(xué)生體驗(yàn)從問(wèn)題出發(fā)到列二次函數(shù)解析式的過(guò)程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)正弦與余弦1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)正弦與余弦1教案

    解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時(shí),tanA>1.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問(wèn)題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)正弦與余弦2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)正弦與余弦2教案

    [教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會(huì)在直角三角形中求出某個(gè)銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個(gè)銳角的正弦和余弦值。[教學(xué)過(guò)程] 一、情景創(chuàng)設(shè)1、問(wèn)題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對(duì)位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對(duì)位置升高了多少?行走了a m呢?2、問(wèn)題2:在上述問(wèn)題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動(dòng)1、思考:從上面的兩個(gè)問(wèn)題可以看出:當(dāng)直角三角形的一個(gè)銳角的大小已確定時(shí),它的對(duì)邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對(duì)邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫(xiě)出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.

  • 部編版語(yǔ)文七年級(jí)下冊(cè)《河中石獸》教案

    部編版語(yǔ)文七年級(jí)下冊(cè)《河中石獸》教案

    一、導(dǎo)入電視?。▓D片)::鐵齒銅牙紀(jì)曉嵐 二、 作者簡(jiǎn)介紀(jì)昀,字曉嵐,清代著 名學(xué)者,生性詼諧風(fēng)趣,任《四庫(kù)全書(shū)》(分古今圖書(shū)為經(jīng)、史、子、集四檔,總名為“四庫(kù)全書(shū)”)總纂官,著有《閱微草堂筆記》等?!堕單⒉萏霉P記》是紀(jì)昀晚年所作的一部文言筆記小說(shuō),題材以妖怪鬼狐為主,但于人事異聞、名物典故等也有記述,內(nèi)容相當(dāng)廣泛。三、感知課文 這篇課文講了一個(gè)故事:有一個(gè)廟靠近河,廟門(mén)倒塌之后,門(mén)旁的兩只石獅也掉到了河里。后來(lái)要修廟,決定要把石獅打撈上來(lái)。有人說(shuō),到下游去找,因?yàn)槭{被水沖走了,結(jié)果在下游沒(méi)找到。一個(gè)讀書(shū)人說(shuō),石獅肯定沉到沙泥里去了,因?yàn)槭^重,沙泥輕,結(jié)果在廟前的沙泥里也沒(méi)找到。一個(gè)老水手最后說(shuō),這兩個(gè)石獅在上游,結(jié)果果然在上游打撈到了。 怎么會(huì)到上游去呢?閱讀完課文后我們便知道了。反復(fù)朗讀,讀準(zhǔn)字音

  • 人教部編版語(yǔ)文八年級(jí)上冊(cè)夢(mèng)回繁華教案

    人教部編版語(yǔ)文八年級(jí)上冊(cè)夢(mèng)回繁華教案

    設(shè)問(wèn)2:第3段和第4段都寫(xiě)繁華,兩段的區(qū)別是什么?預(yù)設(shè) 第3段是概括總寫(xiě)繁華景象,第4段則是具體描繪繁華景象。兩段之間是從概括到具體的邏輯關(guān)系?!驹O(shè)計(jì)意圖】通過(guò)細(xì)讀課文,讓學(xué)生在把握生字詞的基礎(chǔ)上對(duì)課文有初步的感知,可以用簡(jiǎn)單的詞語(yǔ)概括作者所感知畫(huà)面的整體特點(diǎn),而且能夠用文中具體的語(yǔ)句加以印證。以此訓(xùn)練學(xué)生自主把握文章重要信息的能力。三、自主探究尋繁華1.瀏覽課文,理清全文的說(shuō)明順序設(shè)問(wèn)1:作者介紹了這幅畫(huà)哪些方面的信息?在文中進(jìn)行勾畫(huà)批注,并說(shuō)說(shuō)文章可分為哪幾個(gè)部分,概括主要意思。(生瀏覽勾畫(huà),批注交流)預(yù)設(shè) 文章分為三個(gè)部分:第1段:介紹這幅畫(huà)作的創(chuàng)作背景,引出本文的說(shuō)明對(duì)象——《清明上河圖》。第2段:介紹了這幅畫(huà)作的作者張擇端及其創(chuàng)作動(dòng)機(jī)。

  • 人教部編版語(yǔ)文八年級(jí)上冊(cè)藤野先生教案

    人教部編版語(yǔ)文八年級(jí)上冊(cè)藤野先生教案

    預(yù)設(shè) 清政府派遣這些留學(xué)生去國(guó)外留學(xué),目的是學(xué)習(xí)國(guó)外先進(jìn)的科學(xué)技術(shù),回來(lái)報(bào)效國(guó)家,然而實(shí)際上他們?cè)趪?guó)外不學(xué)無(wú)術(shù),忘記了自身使命和肩上的責(zé)任。作者在描寫(xiě)完留學(xué)生的這些丑態(tài)之后,采用了反語(yǔ)的手法,用一句話進(jìn)行了總結(jié)——“實(shí)在標(biāo)致極了”,仿佛是壓抑不住的火山爆發(fā),極盡諷刺之能事,酣發(fā)鄙夷、憎惡之胸臆。師:作者在這里采用了反語(yǔ)的手法,暗諷“清國(guó)留學(xué)生”們的丑態(tài),除此之外,文中還有哪些地方運(yùn)用了這種手法?預(yù)設(shè) 作者稱日俄戰(zhàn)爭(zhēng)時(shí)的日本學(xué)生為“愛(ài)國(guó)青年”,說(shuō)自己國(guó)內(nèi)的論敵為“正人君子”,都是運(yùn)用反語(yǔ)進(jìn)行嘲諷。又如說(shuō)日本對(duì)醫(yī)學(xué)的翻譯“并不比中國(guó)早”,說(shuō)日本青年雖抗議托爾斯泰引用《新約》中的話,但他們“暗地里卻早受了他的影響了”,都是話里有話,含義無(wú)窮的。【設(shè)計(jì)意圖】此環(huán)節(jié)通過(guò)“咬文嚼字”,讓學(xué)生學(xué)會(huì)從字里行間來(lái)品析文章深意,同時(shí)使學(xué)生進(jìn)一步揣摩魯迅先生“幽默諷刺、含蓄深蘊(yùn)”的語(yǔ)言風(fēng)格。

  • 九年級(jí)上冊(cè)道德與法治守望精神家園3作業(yè)設(shè)計(jì)

    九年級(jí)上冊(cè)道德與法治守望精神家園3作業(yè)設(shè)計(jì)

    4. 央視出品,必屬精品。中央電視臺(tái)大型文化節(jié)目《典籍里的中國(guó)》,聚焦優(yōu) 秀中華文化典籍,通過(guò)時(shí)空對(duì)話的創(chuàng)新形式,以“戲劇+影視化”的表現(xiàn)方法, 講述典籍在五千年歷史長(zhǎng)河中源起、流轉(zhuǎn)及書(shū)中的閃亮故事。這有利于 ( )①增強(qiáng)文化認(rèn)同感和民族自豪感 ②弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化 ③吸收借 鑒優(yōu)秀外來(lái)文化的成果 ④讓中華文化成為世界上最優(yōu)秀的文化A. ①② B. ①③ C. ②③ D. ③④5. 2021 年國(guó)慶檔上映的電影《長(zhǎng)津湖》,是一部可歌可泣的保家衛(wèi)國(guó)的戰(zhàn)爭(zhēng)題 材電影,為我們?cè)佻F(xiàn)了偉大的抗美援朝精神??姑涝耋w現(xiàn)了 ( )①以愛(ài)國(guó)主義為核心的時(shí)代精神 ②舍生忘死的革命英雄主義精神 ③以愛(ài) 好和平為核心的民族精神 ④勇于承擔(dān)責(zé)任的革命奉獻(xiàn)精神A. ①② B. ①③ C. ②④ D. ③④6. 2022 虎年春晚節(jié)目《只此青綠》,讓全網(wǎng)發(fā)起了“青綠腰挑戰(zhàn)” 。節(jié)目中, 舞者青綠長(zhǎng)裙曳地,發(fā)髻高聳入云,緩緩轉(zhuǎn)身,似翠山慢移,層巒疊嶂;揮袖之 間,是風(fēng)吹過(guò)大山的痕跡,亦若瀑布流過(guò)山間,勾勒出一副絕美中國(guó)山水畫(huà)。

  • 九年級(jí)上冊(cè)道德與法治守望精神家園2作業(yè)設(shè)計(jì)

    九年級(jí)上冊(cè)道德與法治守望精神家園2作業(yè)設(shè)計(jì)

    2. 內(nèi)容內(nèi)在邏輯第一框題《延續(xù)文化血脈》包括“中華文化根”和“美德萬(wàn)年長(zhǎng)”兩目?jī)?nèi)容,主要闡述了中華優(yōu)秀傳統(tǒng)文化是中華民族的根,中華傳統(tǒng)美德是中華文化的精髓。第一 目側(cè) 重從中華文化的豐富與發(fā)展角度,講述中華民族在五千多年文明發(fā)展中孕育、創(chuàng)造的源 遠(yuǎn)流長(zhǎng)、博大精深的中華文化,重點(diǎn)落在“中國(guó)特色社會(huì)主義文化積淀著中華民族最深 層的精神追求,代表著中華民族獨(dú)特的精神標(biāo)識(shí),為中華民族偉大復(fù)興提供精神動(dòng)力”, 我們要堅(jiān)定文化自信。第二目側(cè)重從代代傳承的中華美德角度,闡釋中華傳統(tǒng)美德的豐 富內(nèi)涵和重要價(jià)值,重點(diǎn)落在“中華傳統(tǒng)美德是中華文化的精髓,蘊(yùn)含著豐富的道德資 源,是建設(shè)富強(qiáng)民主文明和諧美麗的社會(huì)主義現(xiàn)代化強(qiáng)國(guó)的精神力量”。第二框《凝聚價(jià)值追求》學(xué)生在前一框題學(xué)習(xí)了中華文化的作用與發(fā)展,增強(qiáng)了文 化自信心;學(xué)習(xí)了中華美德的內(nèi)涵及影響,明白了美德的力量在踐行。

  • 九年級(jí)上冊(cè)道德與法治追求民主價(jià)值作業(yè)設(shè)計(jì)

    九年級(jí)上冊(cè)道德與法治追求民主價(jià)值作業(yè)設(shè)計(jì)

    【設(shè)計(jì)意圖】 本題難易程度上屬于容易類別, 考查學(xué)生對(duì)書(shū)本核心知識(shí)的理解, 引導(dǎo) 學(xué)生重視教材,夯實(shí)基礎(chǔ)知識(shí)。尤其在社會(huì)主義人民民主的形式和公民參與民主生活 的形式兩個(gè)易混點(diǎn)上加以區(qū)分辨別,從宏觀和微觀兩個(gè)層面認(rèn)識(shí)社會(huì)主義民主。3. (原創(chuàng)) 新冠肺炎疫情發(fā)生以來(lái), 安徽省全面開(kāi)展審批服務(wù) “網(wǎng)上辦”“掌上辦”“郵 寄辦”“預(yù)約辦”等政務(wù)服務(wù)方式,讓群眾不出門(mén),讓數(shù)據(jù)多跑路。這些政務(wù)服務(wù)方式體現(xiàn)出 ( )①發(fā)展民主需要反映人民的民主愿望 ②人民群眾享有的民主權(quán)利越來(lái)越多③社會(huì)主義不斷發(fā)展,民主也愈發(fā)展 ④社會(huì)主義民主保障人民的根本利益A.①②③ B. ①②④ C.①③④ D.②③④【參考答案】 C【設(shè)計(jì)意圖】 本題難易程度上屬于中等類別, 圍繞“新冠疫情”以來(lái)安徽省政務(wù)服 務(wù)方式的變革,以“看得見(jiàn)”的文字考察對(duì)民主的認(rèn)識(shí),以“看不見(jiàn)”的宣傳,傳遞 民主的聲音。同時(shí),結(jié)合民主實(shí)踐為人們生活帶來(lái)的改善,使學(xué)生體會(huì)到我國(guó)社會(huì)主 義民主的優(yōu)越性,增強(qiáng)政治認(rèn)同,堅(jiān)定對(duì)民主價(jià)值的追求。

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線的判定及三角形的內(nèi)切圓教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線的判定及三角形的內(nèi)切圓教案

    解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)直線和圓的位置關(guān)系及切線的性質(zhì)教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)直線和圓的位置關(guān)系及切線的性質(zhì)教案

    解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的應(yīng)用2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的應(yīng)用2教案

    教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.經(jīng)歷探索船是否有觸礁危險(xiǎn)的過(guò)程,進(jìn)一步體會(huì)三角函數(shù)在解決問(wèn)題過(guò)程中的應(yīng)用.2.能夠把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,能夠借助于計(jì)算器進(jìn)行有關(guān)三角函數(shù)的計(jì)算,并能對(duì)結(jié)果的意義進(jìn)行說(shuō)明.(二)能力訓(xùn)練要求發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和解決問(wèn)題的能力.(三)情感與價(jià)值觀要求1.在經(jīng)歷弄清實(shí)際問(wèn)題題意的過(guò)程中,畫(huà)出示意圖,培養(yǎng)獨(dú)立思考問(wèn)題的習(xí)慣和克服困難的勇氣. 2.選擇生活中學(xué)生感興趣的題材,使學(xué)生能積極參與數(shù)學(xué)活動(dòng),提高學(xué)習(xí)數(shù)學(xué)、學(xué)好數(shù)學(xué)的欲望.教具重點(diǎn)1.經(jīng)歷探索船是否有觸礁危險(xiǎn)的過(guò)程,進(jìn)一步體會(huì)三角函數(shù)在解決問(wèn)題過(guò)程中的作用.2.發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識(shí)和解決問(wèn)題的能力.教學(xué)難點(diǎn)根據(jù)題意,了解有關(guān)術(shù)語(yǔ),準(zhǔn)確地畫(huà)出示意圖.教學(xué)方法探索——發(fā)現(xiàn)法教具準(zhǔn)備多媒體演示

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)確定二次函數(shù)的表達(dá)式1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)確定二次函數(shù)的表達(dá)式1教案

    解析:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對(duì)稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱,根據(jù)點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求出點(diǎn)C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對(duì)稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱.∵點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,∴點(diǎn)C的橫坐標(biāo)為-7,∴點(diǎn)C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點(diǎn)B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的應(yīng)用1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的應(yīng)用1教案

    然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時(shí),測(cè)得A點(diǎn)的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上.求出娛樂(lè)場(chǎng)地所在山坡AE的長(zhǎng)度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點(diǎn)F,根據(jù)速度乘以時(shí)間得出CE的長(zhǎng)度,通過(guò)坡度得到∠ECF=30°,通過(guò)平角減去其他角從而得到∠AEF=45°,即可求出AE的長(zhǎng)度.解:作EF⊥AC于點(diǎn)F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂(lè)場(chǎng)地所在山坡AE的長(zhǎng)度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.

上一頁(yè)123...181920212223242526272829下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專注素材下載!