提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版新課標小學數(shù)學一年級上冊分類 說課稿2篇

  • 北師大初中七年級數(shù)學下冊曲線型圖象教案

    北師大初中七年級數(shù)學下冊曲線型圖象教案

    解析:橫軸表示時間,縱軸表示溫度.溫度最高應找到圖象的最高點所對應的x值,即15時,A對;溫度最低應找到圖象的最低點所對應的x值,即3時,B對;這天最高溫度與最低溫度的差應讓前面的兩個y值相減,即38-22=16(℃),C錯;從圖象看出,這天0~3時,15~24時溫度在下降,D對.故選C.方法總結:認真觀察圖象,弄清楚時間是自變量,溫度是因變量,然后由圖象上的點確定自變量及因變量的對應值.三、板書設計1.用曲線型圖象表示變量間關系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢,可通過圖象來研究變量的某些性質,這也是數(shù)形結合的優(yōu)點,但是它也存在感性觀察不夠準確,畫面局限性大的缺點.教學中讓學生自己歸納總結,回顧反思,將知識點串連起來,完成對該部分內容的完整認識和意義建構.這對學生在實際情境中根據(jù)不同需要選擇恰當?shù)姆椒ū硎咀兞块g的關系,發(fā)展與深化思維能力是大有裨益的

  • 北師大初中七年級數(shù)學下冊圖形的全等教案

    北師大初中七年級數(shù)學下冊圖形的全等教案

    解析:根據(jù)“全等三角形的對應角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形內角和定理來求∠ACB的度數(shù).解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法總結:本題將三角形內角和與全等三角形的性質綜合考查,解答問題時要將所求的角與已知角通過全等及三角形內角之間的關系聯(lián)系起來.三、板書設計1.全等形與全等三角形的概念:能夠完全重合的圖形叫做全等形;能夠完全重合的三角形叫做全等三角形.2.全等三角形的性質:全等三角形的對應角、對應線段相等.首先展示全等形的圖片,激發(fā)學生興趣,從圖中總結全等形和全等三角形的概念.最后總結全等三角形的性質,通過練習來理解全等三角形的性質并滲透符號語言推理.通過實例熟悉運用全等三角形的性質解決一些簡單的實際問題

  • 北師大初中七年級數(shù)學下冊用尺規(guī)作角教案

    北師大初中七年級數(shù)學下冊用尺規(guī)作角教案

    解析:①以O為圓心,任意長為半徑作弧交OA于D,交OB于C;②以O′為圓心,以同樣長(OC長)為半徑作弧,交O′B′于C′;③以C′為圓心,CD長為半徑作弧交前弧于D′;④過D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個角等于∠AOB,再以這個角的一邊為邊在其外部作一個角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書設計1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學習了有關尺規(guī)作圖的相關知識,課堂教學內容以學生動手操作為主,在學生動手操作的過程中要鼓勵學生大膽動手,培養(yǎng)學生的動手能力和書面語言表達能力

  • 北師大初中七年級數(shù)學下冊折線型圖象教案

    北師大初中七年級數(shù)學下冊折線型圖象教案

    解析:(1)根據(jù)圖象的縱坐標,可得比賽的路程.根據(jù)圖象的橫坐標,可得比賽的結果;(2)根據(jù)乙加速后行駛的路程除以加速后的時間,可得答案.解:(1)由縱坐標看出,這次龍舟賽的全程是1000米;由橫坐標看出,乙隊先到達終點;(2)由圖象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的時間是3.8-2.2=1.6(分鐘),乙與甲相遇時乙的速度600÷1.6=375(米/分鐘).方法總結:解決雙圖象問題時,正確識別圖象,弄清楚兩圖象所代表的意義,從中挖掘有用的信息,明確實際意義.三、板書設計1.用折線型圖象表示變量間關系2.根據(jù)折線型圖象獲取信息解決問題經(jīng)歷一般規(guī)律的探索過程,培養(yǎng)學生的抽象思維能力,經(jīng)歷從實際問題中得到關系式這一過程,提升學生的數(shù)學應用能力,使學生在探索過程中體驗成功的喜悅,樹立學習的自信心.體驗生活中數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣

  • 北師大初中七年級數(shù)學下冊軸對稱現(xiàn)象教案

    北師大初中七年級數(shù)學下冊軸對稱現(xiàn)象教案

    方法總結:判斷軸對稱的條數(shù),仍然是根據(jù)定義進行判斷,判斷軸對稱圖形的關鍵是尋找對稱軸,注意不要遺漏.探究點二:兩個圖形成軸對稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對稱?解析:根據(jù)軸對稱的意義,經(jīng)過翻折,看兩個圖形能否完全重合,若能重合,則兩個圖形成軸對稱.解:(4)(5)(6).方法總結:動手操作或結合軸對稱的概念展開想象,在腦海中嘗試完成一個動態(tài)的折疊過程,從而得到結論.三、板書設計1.軸對稱圖形的定義2.對稱軸3.兩個圖形成軸對稱這節(jié)課充分利用多媒體教學,給學生以直觀指導,主動向學生質疑,促使學生思考與發(fā)現(xiàn),形成認識,獨立獲取知識和技能.另外,借助多媒體教學給學生創(chuàng)設寬松的學習氛圍,使學生在學習中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)

  • 北師大初中八年級數(shù)學下冊第六章復習教案

    北師大初中八年級數(shù)學下冊第六章復習教案

    解1:設該多邊形邊數(shù)為n,這個外角為x°則 因為n為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因為 ,所以 解2:設該多邊形邊數(shù)為n,這個外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習,鞏固提高1.七邊形的內角和等于______度;一個n邊形的內角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內角和就增加 。3.從多邊形的一個頂點可以畫7條對角線,則這個n邊形的內角和為( )A 1620° B 1800° C 900° D 1440°4.一個多邊形的各個內角都等于120°,它是( )邊形。5.小華想在2012年的元旦設計一個內角和是2012°的多邊形做窗花裝飾教室,他的想法( )實現(xiàn)。(填“能”與“不能”)6. 如圖4,要測量A、B兩點間距離,在O點打樁,取OA的中點 C,OB的中點D,測得CD=30米,則AB=______米.

  • 北師大初中八年級數(shù)學下冊第四章復習教案

    北師大初中八年級數(shù)學下冊第四章復習教案

    在因式分解的幾種方法中,提取公因式法師最基本的的方法,學生也很容易掌握。但在一些綜合運用的題目中,學生總會易忘記先觀察是否有公因式,而直接想著運用公式法分解。這樣直接導致有些題目分解錯誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強。其實公式法分解因式。學生比較會將平方差和完全平方式混淆。這是對公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進行區(qū)分。如果是兩項的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項則優(yōu)先考慮完全平方式進行因式分解。培養(yǎng)學生的整體觀念,靈活運用公式的能力。注重總結做題步驟。這章節(jié)知識看起來很簡單,但操作性很強的,相同或者相似的式子比較熟悉而需要轉化的或者多種公式混合使用的式子就難以入手,基礎不好的學生需要手把手的教,因此,應該引導學生總結多項式因式分解的一般步驟①如果多項式的各項有公因式,那么先提公因式;

  • 北師大初中八年級數(shù)學下冊第二章復習教案

    北師大初中八年級數(shù)學下冊第二章復習教案

    例1 解不等式x> x-2,并將其解集表示在數(shù)軸上.例2 解不等式組 .例3 小明放學回家后,問爸爸媽媽小牛隊與太陽隊籃球比賽的結果.爸爸說:“本場比賽太陽隊的納什比小牛隊的特里多得了12分.”媽媽說:“特里得分的兩倍與納什得分的差大于10;納什得分的兩倍比特里得分的三倍還多.”爸爸又說:“如果特里得分超過20分,則小牛隊贏;否則太陽隊贏.”請你幫小明分析一下.究竟是哪個隊贏了,本場比賽特里、納什各得了多少分?例4 暑假期間,兩名家長計劃帶領若干名學生去旅游,他們聯(lián)系了報價均為每人500元的兩家旅行社,經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩名家長全額收費,學生都按七折收費;乙旅行社的優(yōu)惠條件是家長、學生都按八折收費.假設這兩位家長帶領x名學生去旅游,他們應該選擇哪家旅行社?

  • 北師大初中八年級數(shù)學下冊不等關系教案

    北師大初中八年級數(shù)學下冊不等關系教案

    A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此題中的不等關系:現(xiàn)在已存有55元,計劃從現(xiàn)在起以后每個月節(jié)省20元.若此學生平板電腦至少需要350元.列出不等式20x+55≥350.故選B.方法總結:用不等式表示數(shù)量關系時,要找準題中表示不等關系的兩個量,并用代數(shù)式表示;正確理解題中的關鍵詞,如負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過、至少、至多等的含義.三、板書設計1.不等式的概念2.列不等式(1)找準題目中不等關系的兩個量,并且用代數(shù)式表示;(2)正確理解題目中的關鍵詞語的確切含義;(3)用與題意符合的不等號將表示不等關系的兩個量的代數(shù)式連接起來;(4)要正確理解常見不等式基本語言的含義.本節(jié)課通過實際問題引入不等式,并用不等式表示數(shù)量關系.要注意常用的關鍵詞的含義:負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過,這些關鍵詞中如果含有“不”“非”等文字,一般應包括“=”,這也是學生容易出錯的地方.

  • 北師大初中八年級數(shù)學下冊不等式的解集教案

    北師大初中八年級數(shù)學下冊不等式的解集教案

    【類型二】 根據(jù)數(shù)軸求不等式的解關于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結:本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關于a的方程是解題關鍵.三、板書設計1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學習不等式的解和解集,利用數(shù)軸表示不等式的解,讓學生體會到數(shù)形結合的思想的應用,能夠直觀的理解不等式的解和解集的概念,為接下來的學習打下基礎.在課堂教學中,要始終以學生為主體,以引導的方式鼓勵學生自己探究未知,提高學生的自我學習能力.

  • 北師大初中八年級數(shù)學下冊第五章復習教案

    北師大初中八年級數(shù)學下冊第五章復習教案

    教學效果:部分學生能舉一反三,較好地掌握分式方程及其應用題的有關知識與解決生活中的實際問題等基本技能.第六環(huán)節(jié) 課后練習四、教學反思數(shù)學來源于生活,并應用于生活,讓學生用數(shù)學的眼光觀察生活,除了用所學的數(shù)學知識解決一些生活問題外,還可以從數(shù)學的角度來解釋生活中的一些現(xiàn)象,面向生活是學生發(fā)展的“源頭活水”.在解決實際生活問題的實例選擇上,我們盡量選擇學生熟悉的實例,如:學生身邊的事,購物,農(nóng)業(yè),工業(yè)等方面,讓學生真切地理解數(shù)學來源于生活這一事實。有些學生對應用題有一種心有余悸的感覺,其關鍵是面對應用題不知怎樣分析、怎樣找到等量關系。在教學中,如果采用列表的方法可幫助學生審題、找到等量關系,從而學會分析問題??赡軐W生最初并不適應這種做法,可采用分步走的方法,首先,讓學生從一些簡單、類似的問題中模仿老師的分析方法,然后在練習中讓學生悟出解決問題的竅門,學會舉一反三,最后達到能獨立解決問題的目的。

  • 北師大初中八年級數(shù)學下冊平方差公式教案

    北師大初中八年級數(shù)學下冊平方差公式教案

    答:所有陰影部分的面積和是5050cm2.方法總結:首先應找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認真觀察、仔細思考,善用聯(lián)想來解決這類問題.三、板書設計1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點:能夠運用平方差公式分解因式的多項式必須是二項式,兩項都能寫成平方的形式,且符號相反.運用平方差公式因式分解,首先應注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通??紤]應用平方差公式;如果多項式中有公因式可提,應先提取公因式,而且還要“提”得徹底,最后應注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.

  • 北師大初中八年級數(shù)學下冊中心對稱教案

    北師大初中八年級數(shù)學下冊中心對稱教案

    探究點三:作中心對稱圖形如圖,網(wǎng)格中有一個四邊形和兩個三角形.(1)請你畫出三個圖形關于點O的中心對稱圖形;(2)將(1)中畫出的圖形與原圖形看成一個整體圖形,請寫出這個整體圖形對稱軸的條數(shù);這個整體圖形至少旋轉多少度能與自身重合?解:(1)如圖所示;(2)這個整體圖形的對稱軸有4條;此圖形最少旋轉90°能與自身重合.三、板書設計1.中心對稱如果把一個圖形繞著某一點旋轉180°,它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱.2.中心對稱圖形把一個圖形繞著某一點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.教學過程中,強調學生自主探索和合作交流,結合圖形,多觀察,多歸納,體會識別中心對稱圖形的方法,理解中心對稱圖形的特征.

  • 北師大初中八年級數(shù)學下冊平移的認識教案

    北師大初中八年級數(shù)學下冊平移的認識教案

    方法總結:作平移圖形時,找關鍵點的對應點是關鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應點;②確定圖形中的關鍵點;③利用第一組對應點和平移的性質確定圖中所有關鍵點的對應點;④按原圖形順序依次連接對應點,所得到的圖形即為平移后的圖形.三、板書設計1.平移的定義在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移.2.平移的性質一個圖形和它經(jīng)過平移所得的圖形中,對應點所連的線段平行(或在一條直線上)且相等,對應線段平行(或在一條直線上)且相等,對應角相等.3.簡單的平移作圖教學過程中,強調學生自主探索和合作交流,學生經(jīng)歷將實際問題抽象成圖形問題,培養(yǎng)學生的邏輯思維能力和空間想象能力,使得學生能將所學知識靈活運用到生活中.

  • 北師大初中八年級數(shù)學下冊旋轉作圖教案

    北師大初中八年級數(shù)學下冊旋轉作圖教案

    解析:整個陰影部分比較復雜和分散,像此類問題通常使用割補法來計算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點O逆時針旋轉90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉90°至陰影部分②處,使整個陰影部分割補成半個正方形.解:如圖②,把陰影部分(Ⅰ)繞點O逆時針旋轉90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結:本題是利用旋轉的特征:旋轉前、后圖形的形狀和大小不變,把圖形利用割補法補全為一個面積可以計算的規(guī)則圖形.三、板書設計1.簡單的旋轉作圖2.旋轉圖形的應用教學過程中,強調學生自主探索和合作交流,經(jīng)歷觀察、歸納和動手操作,利用旋轉的性質作圖.

  • 北師大初中九年級數(shù)學下冊垂徑定理教案

    北師大初中九年級數(shù)學下冊垂徑定理教案

    方法總結:垂徑定理雖是圓的知識,但也不是孤立的,它常和三角形等知識綜合來解決問題,我們一定要把知識融會貫通,在解決問題時才能得心應手.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第2題【類型三】 動點問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個動點,求OP的長度范圍.解析:當點P處于弦AB的端點時,OP最長,此時OP為半徑的長;當OP⊥AB時,OP最短,利用垂徑定理及勾股定理可求得此時OP的長.解:作直徑MN⊥弦AB,交AB于點D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結:解題的關鍵是明確OP最長、最短時的情況,靈活利用垂徑定理求解.容易出錯的地方是不能確定最值時的情況.

  • 北師大初中九年級數(shù)學下冊切線長定理教案

    北師大初中九年級數(shù)學下冊切線長定理教案

    (3)若要滿足結論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應是60°,然后結合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結:由于存在性問題的結論有兩種可能,所以具有開放的特征,在假設存在性以后進行的推理或計算.一般思路是:假設存在——推理論證——得出結論.若能導出合理的結果,就做出“存在”的判斷,若導出矛盾,就做出“不存在”的判斷.

  • 北師大初中九年級數(shù)學下冊圓教案

    北師大初中九年級數(shù)學下冊圓教案

    解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結:注意運用平面內兩點之間的距離公式,設平面內任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.

  • 北師大初中九年級數(shù)學下冊正弦與余弦1教案

    北師大初中九年級數(shù)學下冊正弦與余弦1教案

    解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結:當角度在0°cosA>0.當角度在45°<∠A<90°間變化時,tanA>1.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第10題【類型四】 與三角函數(shù)有關的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關系;(2)試證明你的結論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關系式即可得出結論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結:利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關鍵.

  • 二年級數(shù)學下冊第二單元表內除法教案

    二年級數(shù)學下冊第二單元表內除法教案

    一、教材簡析 本單元教學內容主要有:除法的初步認識、用2~6的 乘法口訣求商,解決實際問題。除法的初步認識分兩個層次:第一,以生活中常見的“每份同樣多”的實例合活動情境,讓學生建立“平均分”概念。第二,在“平均分”概念的基礎上引出除法運算,說明除法算式各部分的名稱。用口訣求商遵循由易到難的原則。解決問題是結合除法計算出現(xiàn)的。首先在除法的初步認識教學中 孕伏解決問題的內容。然后在用2~6的乘法口訣求商之后編入了解決有關平均分的實際問題和需要用乘法和除法兩步計算解決簡單實際問題的內容。

上一頁123...123124125126127128129130131132133134下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!