2 根據(jù)下面4幅,你能判斷出哪個學(xué)校的女生人數(shù)最多嗎?(1) 如果甲校的學(xué)生總?cè)藬?shù)900人,那么甲校的女生有多少人?(2) 如果丙校男生與甲校的同樣多,那么丙校學(xué)生總?cè)藬?shù)有多少人?(3) 如果乙校的學(xué)生總?cè)藬?shù)與丙校的同樣多,那么乙校男生有多少人?(4) 如果丁校的男生與乙校的同樣多,那么乙校的女生有多少人?3 出示課件《中國人口占世界的百分比》和《中國國土面積占世界的百分比》統(tǒng)計圖和有關(guān)的數(shù)據(jù)。(1)中國人口約13億 (2)中國國土面積約960萬平方千米(請同學(xué)認(rèn)真觀察統(tǒng)計圖和有關(guān)的數(shù)據(jù),請你說說獲得了哪些信息?并提出我們能夠解決的問題。要求:先在小組交流,然后派代表提出問題,并指定他組回答,其他同學(xué)當(dāng)評委;如果回答正確,由的同學(xué)提問題,否則,由提問題的同學(xué)繼續(xù)提問。同組成員可幫助。)還有什么想法?3 出示西山村果園各種果樹種植面積情況,要求學(xué)生根據(jù)給出的數(shù)據(jù)制成扇形統(tǒng)計圖。
(2)圓錐的體積教學(xué)內(nèi)容:第25~26頁,例2、例3及練習(xí)四的第3~8題。教學(xué)目的:1、 通過分小組倒水實驗,使學(xué)生自主探索出圓錐體積和圓柱體積之間的關(guān)系,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,解決實際生活中有關(guān)圓錐體積計算的簡單問題。2、 借助已有的生活和學(xué)習(xí)經(jīng)驗,在小組活動過程中,培養(yǎng)學(xué)生的動手操作能力和自主探索能力。3、 通過小組活動,實驗操作,巧妙設(shè)置探索障礙,激發(fā)學(xué)生的自主探索意識,發(fā)展學(xué)生的空間觀念。教學(xué)重點:掌握圓錐體積的計算公式。教學(xué)難點:正確探索出圓錐體積和圓柱體積之間的關(guān)系。教學(xué)過程:一、復(fù)習(xí)1、圓錐有什么特征?(使學(xué)生進一步熟悉圓錐的特征:底面、側(cè)面、高和頂點)
【教學(xué)目標(biāo)】知識目標(biāo):⑴ 理解任意角的三角函數(shù)的定義及定義域;⑵ 理解三角函數(shù)在各象限的正負(fù)號;⑶掌握界限角的三角函數(shù)值.能力目標(biāo):⑴會利用定義求任意角的三角函數(shù)值;⑵會判斷任意角三角函數(shù)的正負(fù)號;⑶培養(yǎng)學(xué)生的觀察能力.【教學(xué)重點】⑴ 任意角的三角函數(shù)的概念;⑵ 三角函數(shù)在各象限的符號;⑶特殊角的三角函數(shù)值.【教學(xué)難點】任意角的三角函數(shù)值符號的確定.【教學(xué)設(shè)計】(1)在知識回顧中推廣得到新知識;(2)數(shù)形結(jié)合探求三角函數(shù)的定義域;(3)利用定義認(rèn)識各象限角三角函數(shù)的正負(fù)號;(4)數(shù)形結(jié)合認(rèn)識界限角的三角函數(shù)值;(5)問題引領(lǐng),師生互動.在問題的思考和交流中,提升能力.
5、引發(fā)幼兒學(xué)習(xí)的興趣。重點難點:感知并認(rèn)識數(shù)字1、2、3。教學(xué)準(zhǔn)備:1、卡通數(shù)字1、2、3。2、數(shù)字1、2、3的大卡片及相應(yīng)圖片。3、魔術(shù)口袋,各色數(shù)量的塑料小膠棒、三角形、圓形、正方形。4、各色數(shù)字1、2、3小卡片人手一套。5、數(shù)字兒歌磁帶。6、自制數(shù)字箱三個。
在教學(xué)上,我采用了摸花片給幼兒猜的形式引導(dǎo)幼兒復(fù)習(xí)5的組成。在教學(xué)信息和感知材料的呈現(xiàn)上,我選用了教具模型演示法,讓幼兒明確操作的要求和進行操作的方法。在思維活動的組織上,我還通過講解、比較的方法,將幼兒解決問題的種種策略展示出來,引導(dǎo)幼兒觀察分析,找出哪一種是最好的。堅持使教法有利于突出教材重點,突破難點,符合幼兒認(rèn)識規(guī)律和年齡特征。根據(jù)教學(xué)內(nèi)容和采取的教學(xué)方法及手段,我教給幼兒一些學(xué)習(xí)的方法。操作法是幼兒學(xué)習(xí)數(shù)學(xué)的基本方法。幼兒通過操作進行學(xué)習(xí),我對幼兒的操作給予必要的指導(dǎo),讓幼兒去探索、發(fā)現(xiàn),這樣的學(xué)法可以讓幼兒獲得寶貴的數(shù)學(xué)經(jīng)驗,在教給幼兒操作法的同時,考慮到本課內(nèi)容和幼兒的學(xué)習(xí)情況,對于學(xué)習(xí)速率快的幼兒,我教給他們討論交流的方法,學(xué)習(xí)速率慢的幼兒,我教給他們按順序有重點地觀察的方法,做到授之于漁。
一、說教材 1.教材內(nèi)容:九年義務(wù)教育六年制小學(xué)語文第十一冊第八組第二十五課《學(xué)弈》?! ?.教材簡析:《學(xué)弈》這篇文言文選自《孟子·告子》,通過弈秋教兩個人學(xué)下圍棋的事,說明了做事必須專心致志,決不可三心二意的道理。文章先說弈秋是全國最擅長下圍棋的人,然后講弈秋同時教兩個學(xué)習(xí)態(tài)度不同的人下圍棋,學(xué)習(xí)效果截然不同,最后指出這兩個人學(xué)習(xí)結(jié)果不同,并不是在智力上有多大差異。文言文是古代文明傳承的媒介,雖與現(xiàn)代文在用詞造句、朗讀上有很大差別,但兩者卻有著千絲萬縷、不可分割的內(nèi)在聯(lián)系
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細(xì)繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說明了什么道理?
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進行度量。根據(jù)上述數(shù)據(jù)計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績波動范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會太遠(yuǎn);相反,如果射擊的成績波動幅度很大,那么大多數(shù)的射擊成績離平均成績會比較遠(yuǎn)。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。
可以通過下面的步驟計算一組n個數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項與第i+1項的平均數(shù)。我們在初中學(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計樹人中學(xué)高一年級女生第25,50,75百分位數(shù)。
《函數(shù)的單調(diào)性與最大(?。┲祡》系人教A版高中數(shù)學(xué)必修第一冊第三章第二節(jié)的內(nèi)容,本節(jié)包括函數(shù)的單調(diào)性的定義與判斷及其證明、函數(shù)最大(?。┲档那蠓?。在初中學(xué)習(xí)函數(shù)時,借助圖像的直觀性研究了一些函數(shù)的增減性,這節(jié)內(nèi)容是初中有關(guān)內(nèi)容的深化、延伸和提高函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識是前一節(jié)內(nèi)容函數(shù)的概念和圖像知識的延續(xù),它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡單性質(zhì),是今后研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎(chǔ);在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問需用到函數(shù)的單調(diào)性;同時在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質(zhì)的救開結(jié)合思想將貫穿于我們整個高中數(shù)學(xué)教學(xué)。
《函數(shù)的單調(diào)性與最大(?。┲怠肥歉咧袛?shù)學(xué)新教材第一冊第三章第2節(jié)的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了函數(shù)的概念、定義域、值域及表示法,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。學(xué)生在初中已經(jīng)學(xué)習(xí)了一次函數(shù)、二次函數(shù)、反比例函數(shù)的圖象,在此基礎(chǔ)上學(xué)生對增減性有一個初步的感性認(rèn)識,所以本節(jié)課是學(xué)生數(shù)學(xué)思想的一次重要提高。函數(shù)單調(diào)性是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)等內(nèi)容的基礎(chǔ),對進一步研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實際應(yīng)用,對解決各種數(shù)學(xué)問題有著廣泛作用。課程目標(biāo)1、理解增函數(shù)、減函數(shù) 的概念及函數(shù)單調(diào)性的定義;2、會根據(jù)單調(diào)定義證明函數(shù)單調(diào)性;3、理解函數(shù)的最大(?。┲导捌鋷缀我饬x;4、學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì).數(shù)學(xué)學(xué)科素養(yǎng)
等式性質(zhì)與不等式性質(zhì)是高中數(shù)學(xué)的主要內(nèi)容之一,在高中數(shù)學(xué)中占有重要地位,它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實生活中有著廣泛的應(yīng),有著重要的實際意義.同時等式性質(zhì)與不等式性質(zhì)也為學(xué)生以后順利學(xué)習(xí)基本不等式起到重要的鋪墊.課程目標(biāo)1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數(shù)的大?。?3. 通過教學(xué)培養(yǎng)學(xué)生合作交流的意識和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學(xué)運算:比較多項式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學(xué)建模:運用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。
本節(jié)是新人教A版高中數(shù)學(xué)必修1第1章第1節(jié)第3部分的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了集合的含義以及集合與集合之間的基本關(guān)系,這為學(xué)習(xí)本節(jié)內(nèi)容打下了基礎(chǔ)。本節(jié)內(nèi)容主要介紹集合的基本運算一并集、交集、補集。是對集合基木知識的深入研究。在此,通過適當(dāng)?shù)膯栴}情境,使學(xué)生感受、認(rèn)識并掌握集合的三種基本運算。本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用。本節(jié)內(nèi)容是高中數(shù)學(xué)的主要內(nèi)容,也是高考的對象,在實踐中應(yīng)用廣泛,是高中學(xué)生必須掌握的重點。A.理解兩個集合的并集與交集的含義,會求簡單集合的交、并運算;B.理解補集的含義,會求給定子集的補集;C.能使用 圖表示集合的關(guān)系及運算。 1.數(shù)學(xué)抽象:集合交集、并集、補集的含義;2.數(shù)學(xué)運算:集合的運算;3.直觀想象:用 圖、數(shù)軸表示集合的關(guān)系及運算。
集合的基本運算是人教版普通高中課程標(biāo)準(zhǔn)實驗教科書,數(shù)學(xué)必修1第一章第三節(jié)的內(nèi)容. 在此之前,學(xué)生已學(xué)習(xí)了集合的含義以及集合與集合之間的基本關(guān)系,這為學(xué)習(xí)本節(jié)內(nèi)容打下了基礎(chǔ). 本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用. 本節(jié)內(nèi)容是高中數(shù)學(xué)的主要內(nèi)容,也是高考的對象,在實踐中應(yīng)用廣泛,是高中學(xué)生必須掌握的重點.課程目標(biāo)1. 理解兩個集合的并集與交集的含義,能求兩個集合的并集與交集;2. 理解全集和補集的含義,能求給定集合的補集; 3. 能使用Venn圖表達集合的基本關(guān)系與基本運算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:并集、交集、全集、補集含義的理解;2.邏輯推理:并集、交集及補集的性質(zhì)的推導(dǎo);3.數(shù)學(xué)運算:求 兩個集合的并集、交集及補集,已知并集、交集及補集的性質(zhì)求參數(shù)(參數(shù)的范圍);4.數(shù)據(jù)分析:通過并集、交集及補集的性質(zhì)列不等式組,此過程中重點關(guān)注端點是否含“=”及?問題;
本節(jié)內(nèi)容來自人教版高中數(shù)學(xué)必修一第一章第一節(jié)集合第二課時的內(nèi)容。集合論是現(xiàn)代數(shù)學(xué)的一個重要基礎(chǔ),是一個具有獨特地位的數(shù)學(xué)分支。高中數(shù)學(xué)課程是將集合作為一種語言來學(xué)習(xí),在這里它是作為刻畫函數(shù)概念的基礎(chǔ)知識和必備工具。本小節(jié)內(nèi)容是在學(xué)習(xí)了集合的含義、集合的表示方法以及元素與集合的屬于關(guān)系的基礎(chǔ)上,進一步學(xué)習(xí)集合與集合之間的關(guān)系,同時也是下一節(jié)學(xué)習(xí)集合間的基本運算的基礎(chǔ),因此本小節(jié)起著承上啟下的關(guān)鍵作用.通過本節(jié)內(nèi)容的學(xué)習(xí),可以進一步幫助學(xué)生利用集合語言進行交流的能力,幫助學(xué)生養(yǎng)成自主學(xué)習(xí)、合作交流、歸納總結(jié)的學(xué)習(xí)習(xí)慣,培養(yǎng)學(xué)生從具體到抽象、從一般到特殊的數(shù)學(xué)思維能力,通過Venn圖理解抽象概念,培養(yǎng)學(xué)生數(shù)形結(jié)合思想。
四、小結(jié)1.知識:如何采用兩角和或差的正余弦公式進行合角,借助三角函數(shù)的相關(guān)性質(zhì)求值.其中三角函數(shù)最值問題是對三角函數(shù)的概念、圖像和性質(zhì),以及誘導(dǎo)公式、同角三角函數(shù)基本關(guān)系、和(差)角公式的綜合應(yīng)用,也是函數(shù)思想的具體體現(xiàn). 如何科學(xué)的把實際問題轉(zhuǎn)化成數(shù)學(xué)問題,如何選擇自變量建立數(shù)學(xué)關(guān)系式;求解三角函數(shù)在某一區(qū)間的最值問題.2.思想:本節(jié)課通過由特殊到一般方式把關(guān)系式 化成 的形式,可以很好地培養(yǎng)學(xué)生探究、歸納、類比的能力. 通過探究如何選擇自變量建立數(shù)學(xué)關(guān)系式,可以很好地培養(yǎng)學(xué)生分析問題、解決問題的能力和應(yīng)用意識,進一步培養(yǎng)學(xué)生的建模意識.五、作業(yè)1. 課時練 2. 預(yù)習(xí)下節(jié)課內(nèi)容學(xué)生根據(jù)課堂學(xué)習(xí),自主總結(jié)知識要點,及運用的思想方法。注意總結(jié)自己在學(xué)習(xí)中的易錯點;
第一節(jié)通過研究集合中元素的特點研究了元素與集合之間的關(guān)系及集合的表示方法,而本節(jié)重點通過研究元素得到兩個集合之間的關(guān)系,尤其學(xué)生學(xué)完兩個集合之間的關(guān)系后,一定讓學(xué)生明確元素與集合、集合與集合之間的區(qū)別。課程目標(biāo)1. 了解集合之間包含與相等的含義,能識別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達集合間的關(guān)系,體會直觀圖示對理解抽象概念的作用。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學(xué)運算:由集合間的關(guān)系求參數(shù)的范圍,常見包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過集合關(guān)系列不等式組, 此過程中重點關(guān)注端點是否含“=”及 問題;5.數(shù)學(xué)建模:用集合思想對實際生活中的對象進行判斷與歸類。
它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進行求值、化簡、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運算能力,但在數(shù)學(xué)的應(yīng)用意識與應(yīng)用能力方面尚需進一步培養(yǎng).課程目標(biāo)1.能用二倍角公式推導(dǎo)出半角公式,體會三角恒等變換的基本思想方法,以及進行簡單的應(yīng)用. 2.了解三角恒等變換的特點、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進行三角函數(shù)式的化簡、求值以及證明,進而進行簡單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學(xué)運算:三角函數(shù)式的求值.
新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數(shù)學(xué)模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學(xué)生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學(xué)生,從中選擇一名學(xué)生,即樣本點是有限個;因為是隨機選取的,所以選到每個學(xué)生的可能性都相等,因此這是一個古典概型。
(4)“不論m取何實數(shù),方程x2+2x-m=0都有實數(shù)根”是全稱量詞命題,其否定為“存在實數(shù)m0,使得方程x2+2x-m0=0沒有實數(shù)根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應(yīng)結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結(jié)論.(2)對于省略量詞的命題,應(yīng)先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓(xùn)練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。