探索1:上節(jié)我們列出了與地毯的花邊寬度有關的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)
教學目標:1.能利用三角函數概念推導出特殊角的三角函數值.2.在探索特殊角的三角函數值的過程中體會數形結合思想.教學重點:特殊角30°、60°、45°的三角函數值.教學難點:靈活應用特殊角的三角函數值進行計算.☆ 預習導航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數:sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數量關系?如果∠A=45°,那么三邊長有什么特殊的數量關系?二、導讀:仔細閱讀課本內容后完成下面填空:
教學反思: 1.本課時設計的主導思想是:將數形結合的思想滲透給學生,使學生對數與形有一個初步的認識.為將來的學習打下基礎,這節(jié)課是一堂起始課,它為學生的思維開拓了一個新的天地.在傳統(tǒng)的教學安排中,這節(jié)課的地位沒有提到一定的高度,只是交給學生比較線段的方法,沒有從數形結合的高度去認識.實際上這節(jié)課大有可講,可以挖掘出較深的內容.在教知識的同時,交給學生一種很重要的數學思想.這一點不容忽視,在日常的教學中要時時注意.2.學生在小學時只會用圓規(guī)畫圓,不會用圓規(guī)去度量線段的大小以及截取線段,通過這節(jié)課,學生對圓規(guī)的用法有一個新的認識.3.在課堂練習中安排了度量一些三角形的邊的長度,目的是想通過度量使學生對“兩點之間線段最短”這一結論有一個感性的認識,并為下面的教學做一個鋪墊.
方法總結:對等式進行變形,必須在等式的兩邊同時進行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數必須相同.探究點二:利用等式的基本性質解方程用等式的性質解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結:解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設計教學過程中,強調學生自主探索和合作交流,通過觀察、操作、歸納等數學活動,感受數學思想的條理性和數學結論的嚴密性.
解析:根據AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數.解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結:通過本題要掌握角平分線的作圖步驟,根據作圖明確AM是∠BAC的角平分線是解題的關鍵.三、板書設計1.角平分線的性質:角平分線上的點到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數學生在性質的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法總結:如果按照先算乘法,再算加減,則運算較繁瑣,且符號容易出錯,但如果逆用乘法對加法的分配律,則可使運算簡便.探究點三:有理數乘法的運算律的實際應用甲、乙兩地相距480千米,一輛汽車從甲地開往乙地,已經行駛了全程的13,再行駛多少千米就可以到達中點?解析:把兩地間的距離看作單位“1”,中點即全程12處,根據題意用乘法分別求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到達中點.方法總結:解答本題的關鍵是根據題意列出算式,然后根據乘法的分配律進行簡便計算.新課程理念要求把學生“學”數學放在教師“教”之前,“導學”是教學的重點.因此,在本節(jié)課的教學中,不要直接將結論告訴學生,而是引導學生從大量的實例中尋找解決問題的規(guī)律.學生經歷積極探索知識的形成過程,最后總結得出有理數乘法的運算律.整個教學過程要讓學生積極參與,獨立思考和合作探究相結合,教師適當點評,以達到預期的教學效果.
解:由題意得a+b=0,cd=1,|m|=6,m=±6;∴(1)當m=6時,原式=06-1+6=5;(2)當m=-6時,原式=0-6-1+6=5.故a+bm-cd+|m|的值為5.方法總結:解答此題的關鍵是先根據題意得出a+b=0,cd=1及m=±6,再代入所求代數式進行計算.探究點三:有理數乘法的應用性問題小紅家春天粉刷房間,雇用了5個工人,干了3天完成;用了某種涂料150升,費用為4800元,粉刷的面積是150m2.最后結算工錢時,有以下幾種方案:方案一:按工算,每個工100元;(1個工人干1天是一個工);方案二:按涂料費用算,涂料費用的30%作為工錢;方案三:按粉刷面積算,每平方米付工錢12元.請你幫小紅家出主意,選擇哪種方案付錢最合算(最省)?解析:根據有理數的乘法的意義列式計算.解:第一種方案的工錢為100×3×5=1500(元);第二種方案的工錢為4800×30%=1440(元);第三種方案的工錢為150×12=1800(元).答:選擇方案二付錢最合算(最省).方法總結:解此題的關鍵是根據題意列出算式,計算出結果,比較得出最省的付錢方案.
討論歸納,總結出多個有理數相乘的規(guī)律:幾個不等于0的因數相乘,積的符號由負因數的個數決定。當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個因數為0,積就為0。(2)幾個不等于0的因數相乘時,積的絕對值是多少?(生:積的絕對值是這幾個因數的絕對值的乘積.)例2、計算:(1) ;(2) 分析:(1)有多個不為零的有理數相乘時,可以先確定積的符號,再把絕對值相乘;(2)若其中有一個因數為0,則積為0。解:(1) = (2) =0練習(1) ,(2) ,(3) 6、探索活動:把-6表示成兩個整數的積,有多少種可能性?把它們全部寫出來。(三)課堂小結通過本節(jié)課的學習,大家學會了什么?(1)有理數的乘法法則。(2)多個不等于0的有理數相乘,積的符號由負因數的個數決定。(3)幾個數相乘時,如果有一個因數是0,則積就為0。(4)乘積是1的兩個有理數互為倒數。(四)作業(yè):課本作業(yè)題
方法總結:股票每天的漲跌都是在前一天的基礎上進行的,不要理解為每天都是在67元的基礎上漲跌.另外熟記運算法則并根據題意準確列出算式也是解題的關鍵.三、板書設計加法法則(1)同號兩數相加,取與加數相同的符號,把絕對 值相加.(2)異號兩數相加,取絕對值較大加數的符號,并 用較大的絕對值減去較小的絕對值.(3)互為相反數的兩數相加得0.(4)一個數同0相加,仍得這個數.本課時利用情境教學、解決問題等方法進行教學,使學生在情境中提出問題,并尋找解決問題的途徑,因此不知不覺地進入學習氛圍,把學生從被動學習變?yōu)橹鲃酉雽W.在本節(jié)教學中,要堅持以學生為主體,教師為主導,充分調動學生的興趣和積極性,使他們最大限度地參與到課堂的活動中.
1.掌握有理數混合運算的順序,并能熟練地進行有理數加、減、乘、除、乘方的混合運算.2.在運算過程中能合理地應用運算律簡化運算.一、情境導入在學完有理數的混合運算后,老師為了檢驗同學們的學習效果,出了下面這道題:計算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計算正確嗎?二、合作探究探究點一:有理數的混合運算計算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運算,運算時,一定要注意運算順序,尤其是本題中的乘除運算.要從左到右進行計算;(2)題有大括號、中括號,在運算時,可從里到外進行.注意要靈活掌握運算順序.
師生共同歸納法則2、異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。生5:這兩天的庫存量合計增加了2噸。(+3)+(-1)=+2 或(+8)+(-6)=+2師:會不會出現和為零的情況?提示:可以聯(lián)系倉庫進出貨的具體情形。生6:如星期一倉庫進貨5噸,出貨5噸,則庫存量為零。(+5)+(-5)=0師生共同歸納法則3、互為相反數的兩個數相加得零。師:你能用加法法則來解釋法則3嗎?生7:可用異號兩數相加的法則。一般地還有:一個數同零相加,仍得這個數。小結:運算關鍵:先分類運算步驟:先確定符號,再計算絕對值做一做:(口答)確定下列各題中和的符號,并說明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 計算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:請四位學生板演,讓學生批改并說明理由。
方法總結:觀察表中的數據,發(fā)現其中的變化規(guī)律,然后根據其增減趨勢寫出自變量與因變量之間的關系式.三、板書設計1.用關系式表示變量間關系2.表格和關系式的區(qū)別與聯(lián)系:表格能直接得到某些具體的對應值,但不能直接反映變量的整體變化情況;用關系式表示變量之間的關系簡單明了,便于計算分析,能方便求出自變量為任意一個值時,相對應的因變量的值,但是需計算.本節(jié)課的教學內容是變量間關系的另一種表示方法,這種表示方法學生才接觸到,學生感覺有點難.這節(jié)課的重點是讓學生掌握用關系式與表格表示變量間的關系,難點是理解這兩種表示方法的優(yōu)缺點.就此問題,通過讓學生對幾個例子比較、討論、總結、歸納兩種方法的優(yōu)點來解決,這樣學生就能很好地區(qū)分這兩種表示方法,并能對不同的問題選擇恰當的方法
方法總結:絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據絕對值的性質將絕對值的符號去掉,最后進行化簡.此類問題就是根據三角形的三邊關系,判斷絕對值符號里面式子的正負,然后進行化簡.三、板書設計1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學生經歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學生探究的欲望,圍繞這個問題讓學生自己動手操作,發(fā)現有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關系,重點研究“能圍成三角形的三條邊之間到底有什么關系”.通過觀察、驗證、再操作,最終發(fā)現三角形任意兩邊之和大于第三邊這一結論.這樣教學符合學生的認知特點,既增加了學習興趣,又增強了學生的動手能力
解:(1)電動車的月產量y為隨著時間x的變化而變化,有一個時間x就有唯一一個y與之對應,月產量y是時間x的因變量;(2)6月份產量最高,1月份產量最低;(3)6月份和1月份相差最大,在1月份加緊生產,實現產量的增值.方法總結:觀察因變量隨自變量變化而變化的趨勢,實質是觀察自變量增大時,因變量是隨之增大還是減?。?、板書設計1.常量與變量:在一個變化過程中,數值發(fā)生變化的量為變量,數值始終不變的量稱之為常量.2.用表格表示數量間的關系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現的一些變化現象的兩個重要的量,對于我們所熟悉的變化,在用了這兩個量的描述之后更加鮮明.本節(jié)是學好本章的基礎,教學中立足于學生的認知基礎,激發(fā)學生的認知沖突,提升學生的認知水平,使學生在原有的知識基礎上迅速遷移到新知上來
解析:(1)根據AD∥BC可知∠ADC=∠ECF,再根據E是CD的中點可求出△ADE≌△FCE,根據全等三角形的性質即可解答;(2)根據線段垂直平分線的性質判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結:此題主要考查線段的垂直平分線的性質等幾何知識.線段垂直平分線上的點到線段兩個端點的距離相等,利用它可以證明線段相等.探究點二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個公共汽車站,A,B是路邊兩個新建小區(qū),這個公共汽車站C建在什么位置,能使兩個小區(qū)到車站的路程一樣長(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?
1.關于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數式或二次根式的運算;(2)當一個二次根式前面乘有一個有理數或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數或有理式就叫做二次根式的系數;(3)二次根式的被開方數,可以是某個確定的非負實數,也可以是某個代數式表示的數,但其中所含字母的取值必須使得該代數式的值為非負實數;(4)像“ , ”等雖然可以進行開方運算,但它們仍屬于二次根式。2.二次根式的主要性質(1) ; (2) ; (3) ;(4)積的算術平方根的性質: ;(5)商的算術平方根的性質: ;
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內角互補,兩直線平行).方法總結:解此類題應首先結合圖形猜測結論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內錯角相等,同旁內角互補)來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設計平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內錯角相等,兩直線平行同旁內角互補,兩直線平行本節(jié)課通過經歷探索平行線的判定方法的過程,發(fā)展學生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
方法總結:平行線與角的大小關系、直線的位置關系是緊密聯(lián)系在一起的.由兩直線平行的位置關系得到兩個相關角的數量關系,從而得到相應角的度數.探究點四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結論.已知AB∥CD,但沒有一條直線既與AB相交,又與CD相交,所以需要作輔助線構造同位角、內錯角或同旁內角,但是又要保證原有條件和結論的完整性,所以需要過點E作AB的平行線.證明:如圖所示,過點E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內角互補).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內角互補).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質),即∠B+∠BED+∠D=360°.方法總結:過一點作一條直線或線段的平行線是我們常作的輔助線.
四個不同類型的問題由淺入深,學生能從不同角度掌握求一次函數的方法.對于問題4,教師可引導學生分析,并教學生要學會畫圖,利用圖象分析問題,體會數形結合方法的重要性.學生若出現解題格式不規(guī)范的情況,教師應糾正并給予示范,訓練學生規(guī)范答題的習慣.第五環(huán)節(jié)課時小結內容:總結本課知識與方法1.本節(jié)課主要學習了怎樣確定一次函數的表達式,在確定一次函數的表達式時可以用待定系數法,即先設出解析式,再根據題目條件(根據圖象、表格或具體問題)求出 , 的值,從而確定函數解析式。其步驟如下:(1)設函數表達式;(2)根據已知條件列出有關k,b的方程;(3)解方程,求k,b;4.把k,b代回表達式中,寫出表達式.2.本節(jié)課用到的主要的數學思想方法:數形結合、方程的思想.目的:引導學生小結本課的知識及數學方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習題4.5:1,2,3,4目的:進一步鞏固當天所學知識。教師也可根據學生情況適當增減,但難度不應過大.
證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內角)∴∠BDC>∠A(不等式的性質)(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內角的和)∵∠DEC是△ABE的一個外角∴∠DEC=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動目的:讓學生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學生的證明思路,特別是不等關系的證明題,因為學生接觸較少,因此更需要加強練習.注意事項:學生對于幾何圖形中的不等關系的證明比較陌生,因此有必要在證明第2小題中,要引導學生找到一個過渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關系的傳遞性得出∠1>∠2。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。