【類型四】 含整數指數冪、零指數冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據有理數的乘方、零指數冪、負整數指數冪及絕對值的性質計算出各數,再根據實數的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結:熟練掌握有理數的乘方、零指數冪、負整數指數冪及絕對值的性質是解答此題的關鍵.三、板書設計1.同底數冪的除法法則:同底數冪相除,底數不變,指數相減.2.零次冪:任何一個不等于零的數的零次冪都等于1.即a0=1(a≠0).3.負整數次冪:任何一個不等于零的數的-p(p是正整數)次冪,等于這個數p次冪的倒數.即a-p=1ap(a≠0,p是正整數).從計算具體問題中的同底數冪的除法,逐步歸納出同底數冪除法的一般性質.教學時要多舉幾個例子,讓學生從中總結出規(guī)律,體驗自主探究的樂趣和數學學習的魅力,為以后的學習奠定基礎
問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現宣布,可能發(fā)現除地球外適合人類居住的星球,一時間引起了人們的廣泛關注.早在2014年,NASA就發(fā)現一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現的適居帶內、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數冪的乘法【類型一】 底數為單項式的同底數冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據同底數冪的乘法法則進行計算即可;(2)先算乘方,再根據同底數冪的乘法法則進行計算即可;(3)根據同底數冪的乘法法則進行計算即可.
教學目標(一)教學知識點1.經歷探索船是否有觸礁危險的過程,進一步體會三角函數在解決問題過程中的應用.2.能夠把實際問題轉化為數學問題,能夠借助于計算器進行有關三角函數的計算,并能對結果的意義進行說明.(二)能力訓練要求發(fā)展學生的數學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數學活動,提高學習數學、學好數學的欲望.教具重點1.經歷探索船是否有觸礁危險的過程,進一步體會三角函數在解決問題過程中的作用.2.發(fā)展學生數學應用意識和解決問題的能力.教學難點根據題意,了解有關術語,準確地畫出示意圖.教學方法探索——發(fā)現法教具準備多媒體演示
解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結:解決此類問題的關鍵是先進行數學建模,將實際問題中的條件轉化為數學問題中的條件.常有兩個步驟:(1)根據題意得出二次函數的關系式,將實際問題轉化為純數學問題;(2)應用有關函數的性質作答.
教學目標:1.知道二次函數與一元二次方程的聯系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結合函數圖象求方程的根.教學重點:二次函數與一元二次方程的聯系.預設難點:用二次函數與一元二次方程的關系綜合解題.☆ 預習導航 ☆一、鏈接:1.畫一次函數y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關系2.不解方程3x2-2x+4=0,此方程有 個根。二、導讀畫二次函數y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關系?(3)一元二次方程ax2+bx+c=0是二次函數y=ax2+bx+c當函數值y=0時的特殊情況.二次函數y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關系?
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據對稱軸是x=-3,求出b=6,即可得出答案;(2)根據CD∥x軸,得出點C與點D關于x=-3對稱,根據點C在對稱軸左側,且CD=8,求出點C的橫坐標和縱坐標,再根據點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關于x=-3對稱.∵點C在對稱軸左側,且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結:此題考查了待定系數法求二次函數的解析式以及二次函數的圖象和性質,注意掌握數形結合思想與方程思想的應用.
問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉動度盤,使度盤的直徑對準低處的目標,記下此時鉛垂線所指的度數,同樣根據“同角的余角相等”,鉛垂線所指的度數就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據測量數據,就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內,且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數據:2≈1.41,結果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結:解決本題的關鍵是能借助仰角、俯角和坡度構造直角三角形,并結合圖形利用三角函數解直角三角形.
證明:過點A作AF∥DE,交BC于點F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結:利用等腰三角形“三線合一”得出結論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設計1.全等三角形的判定和性質2.等腰三角形的性質:等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結論.本節(jié)課由于采用了動手操作以及討論交流等教學方法,有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數學生對等腰三角形的“三線合一”性質理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高
解析:(1)先把第二個分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結:分式的分母互為相反數時,可以把其中一個分母放到帶有負號的括號內,把分母化為完全相同.再根據同分母分式相加減的法則進行運算.三、板書設計1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分數的加減法類比得出同分母分式的加減法.易錯點一是符號,二是結果的化簡.在教學中,讓學生參與課堂探究,進行自主歸納,并對易錯點加強練習.從而讓學生對知識的理解從感性認識上升到理性認識.
光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數,用光速除以人造地球衛(wèi)星的速度,可轉化為單項式相除問題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結:解整式除法的實際應用題時,應分清何為除式,何為被除式,然后應當單項式除以單項式法則計算.三、板書設計1.單項式除以單項式的運算法則:單項式相除,把系數、同底數冪分別相除,作為商的因式;對于只在被除式里含有的字母,則連同它的指數作為商的一個因式.2.單項式除以單項式的應用在教學過程中,通過生活中的情景導入,引導學生根據單項式乘以單項式的乘法運算推導出其逆運算的規(guī)律,在探究的過程中經歷數學概念的生成過程,從而加深印象
解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結:掌握長方形的面積公式和單項式乘單項式法則是解題的關鍵.三、板書設計1.單項式乘以單項式的運算法則:單項式相乘,把系數、同底數冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數作為積的一個因式.2.單項式乘以單項式的應用本課時的重點是讓學生理解單項式的乘法法則并能熟練應用.要求學生在乘法的運算律以及冪的運算律的基礎上進行探究.教師在課堂上應該處于引導位置,鼓勵學生“試一試”,學生通過動手操作,能夠更為直接的理解和應用該知識點
方法總結:在等腰三角形有關計算或證明中,會遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設計1.等腰三角形的性質:等腰三角形是軸對稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸;等腰三角形的兩個底角相等.2.運用等腰三角性質解題的一般思想方法:方程思想、整體思想和轉化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數學生對等腰三角形的“三線合一”性質理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高
一、情境導入1.計算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據多項式乘以單項式的運算歸納出多項式除以單項式的運算法則嗎?二、合作探究探究點:多項式除以單項式【類型一】 直接利用多項式除以單項式進行計算計算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據多項式除以單項式,先用多項式的每一項分別除以這個單項式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結:多項式除以單項式,先把多項式的每一項都分別除以這個單項式,然后再把所得的商相加.
解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉化為三角形后木架的形狀就不變了.根據具體多邊形轉化為三角形的經驗及題中所加木條可找到一般規(guī)律.解:過n邊形的一個頂點可以作(n-3)條對角線,把多邊形分成(n-2)個三角形,所以,要使一個n邊形木架不變形,至少需要(n-3)根木條固定.方法總結:將多邊形轉化為三角形時,所需要的木條根數,可從具體到一般去發(fā)現規(guī)律,然后驗證求解.三、板書設計1.邊邊邊:三邊對應相等的兩個三角形全等,簡寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動入手,有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊邊邊”掌握較好,達到了教學的預期目的.存在的問題是少數學生在輔助線的構造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學中進一步加強鞏固和訓練
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設計1.邊角邊:兩邊及其夾角分別相等的兩個三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應相等的兩個三角形不一定全等.2.全等三角形判定與性質的綜合運用本節(jié)課從操作探究入手,具有較強的操作性和直觀性,有利于學生從直觀上積累感性認識,從而有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時不會正確分類,需要在今后的教學和作業(yè)中進一步加強分類思想的鞏固和訓練
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結:本題主要利用了“直角三角形兩銳角互余”的性質和三角形的內角和定理,熟記性質并準確識圖是解題的關鍵.三、板書設計1.三角形的內角和定理:三角形的內角和等于180°.2.三角形內角和定理的證明3.直角三角形的性質:直角三角形兩銳角互余.本節(jié)課通過一段對話設置疑問,巧設懸念,激發(fā)起學生獲取知識的求知欲,充分調動學生學習的積極性,使學生由被動接受知識轉為主動學習,從而提高學習效率.然后讓學生自主探究,在教學過程中充分發(fā)揮學生的主動性,讓學生提出猜想.在教學中,教師通過必要的提示指明學生思考問題的方向,在學生提出驗證三角形內角和的不同方法時,教師注意讓學生上臺演示自己的操作過程和說明自己的想法,這樣有助于學生接受三角形的內角和是180°這一結論
解:(1)電動車的月產量y為隨著時間x的變化而變化,有一個時間x就有唯一一個y與之對應,月產量y是時間x的因變量;(2)6月份產量最高,1月份產量最低;(3)6月份和1月份相差最大,在1月份加緊生產,實現產量的增值.方法總結:觀察因變量隨自變量變化而變化的趨勢,實質是觀察自變量增大時,因變量是隨之增大還是減小.三、板書設計1.常量與變量:在一個變化過程中,數值發(fā)生變化的量為變量,數值始終不變的量稱之為常量.2.用表格表示數量間的關系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現的一些變化現象的兩個重要的量,對于我們所熟悉的變化,在用了這兩個量的描述之后更加鮮明.本節(jié)是學好本章的基礎,教學中立足于學生的認知基礎,激發(fā)學生的認知沖突,提升學生的認知水平,使學生在原有的知識基礎上迅速遷移到新知上來
1.進一步理解概率的意義并掌握計算事件發(fā)生概率的方法;(重點)2.了解事件發(fā)生的等可能性及游戲規(guī)則的公平性.(難點)一、情境導入一個箱子中放有紅、黃、黑三個小球,三個人先后去摸球,一人摸一次,一次摸出一個小球,摸出后放回,摸出黑色小球為贏,那么這個游戲是否公平?二、合作探究探究點一:與摸球有關的等可能事件的概率【類型一】 摸球問題一個不透明的盒子中放有4個白色乒乓球和2個黃色乒乓球,所有乒乓球除顏色外完全相同,從中隨機摸出1個乒乓球,摸出黃色乒乓球的概率為()A.23 B.12 C.13 D.16解析:根據題意可得不透明的袋子里裝有6個乒乓球,其中2個黃色的,任意摸出1個,則P(摸到黃色乒乓球)=26=13.故選C.方法總結:概率的求法關鍵是找準兩點:①全部情況的總數;②符合條件的情況數目.二者的比值就是其發(fā)生的概率.【類型二】 與代數知識相關的問題已知m為-9,-6,-5,-3,-2,2,3,5,6,9中隨機取的一個數,則m4>100的概率為()A.15 B.310 C.12 D.35
解:(1)設第一次購買的單價為x元,則第二次的單價為1.1x元,根據題意得14521.1x-1200x=20,解得x=6.經檢驗,x=6是原方程的解.(2)第一次購買水果1200÷6=200(千克).第二次購買水果200+20=220(千克).第一次賺錢為200×(8-6)=400(元),第二次賺錢為100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以兩次共賺錢400-12=388(元).答:第一次水果的進價為每千克6元;該老板兩次賣水果總體上是賺錢了,共賺了388元.方法總結:本題具有一定的綜合性,應該把問題分解成購買水果和賣水果兩部分分別考慮,掌握這次活動的流程.三、板書設計列分式方程解應用題的一般步驟是:第一步,審清題意;第二步,根據題意設未知數;第三步,根據題目中的數量關系列出式子,并找準等量關系,列出方程;第四步,解方程,并驗根,還要看方程的解是否符合題意;最后作答.