問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉(zhuǎn)化為空間某一個平面內(nèi)點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.
【教學(xué)目標】知識與技能:了解我國不同等級城市的劃分,并理論聯(lián)系實際辨別現(xiàn)實社會的城市等級運用有關(guān)原理,說明不同等級城市服務(wù)范圍的差異。了解城市服務(wù)范圍與地理位置的關(guān)系。掌握不同等級城市的分布特點了解稱城市六邊形理論,并能用其解釋荷蘭圩田居民點設(shè)置問題過程與方法:通過對棗強鎮(zhèn)及上海城市等級演化分布的學(xué)習,掌握不同等級城市城市服務(wù)范圍與功能以及城市等級提高的基本條件通過對德國城市分布案例的學(xué)習,總結(jié)歸納出不同等級城市分布規(guī)律通過城市六邊形理論的學(xué)習,學(xué)會分析城市居民點布局等現(xiàn)實問題情感態(tài)度與價值觀:通過學(xué)生對我國不同等級城市(經(jīng)濟、人口、交通、服務(wù)種類)等相關(guān)資料的搜集,讓學(xué)生關(guān)心我國基本地理國情,增強熱愛祖國的情感。養(yǎng)成求真、求實的科學(xué)態(tài)度,提高地理審美情趣。
本節(jié)課標解讀:1.說明以種植業(yè)為主的農(nóng)業(yè)地域類型的形成條件及特點;2.說出商品谷物農(nóng)業(yè)的分布范圍,說明商品谷物農(nóng)業(yè)的形成條件及特點。內(nèi)容地位與作用:農(nóng)業(yè)是受自然環(huán)境影響最大的產(chǎn)業(yè)。農(nóng)業(yè)是發(fā)展歷史最悠久的產(chǎn)業(yè),隨著社會的發(fā)展和進步,社會環(huán)境對農(nóng)業(yè)的影響越來越大。以季風水田農(nóng)業(yè)為主的農(nóng)業(yè)地域類型,主要體現(xiàn)自然環(huán)境對農(nóng)業(yè)地域形成的影響;商品谷物農(nóng)業(yè)則體現(xiàn)了社會環(huán)境對農(nóng)業(yè)地域形成的影響。本節(jié)內(nèi)容包括兩部分內(nèi)容,一個是季風水田農(nóng)業(yè),主要分布在亞洲季風區(qū);一個是商品谷物農(nóng)業(yè),主要分布在發(fā)達國家。教材文字內(nèi)容不多,配備了大量的地圖和景觀圖。因此,在教學(xué)過程中要充分組織學(xué)生查閱地圖,挖掘地理信息,培養(yǎng)分析能力。分析農(nóng)業(yè)區(qū)位因素時,必須從自然因素和社會經(jīng)濟因素兩個方面去分析,找出優(yōu)勢區(qū)位因素來。
1.導(dǎo)入新課:通過視頻“阿根廷的潘帕斯草原”,引起學(xué)生的興趣,進而引出新的學(xué)習內(nèi)容——以畜牧業(yè)為主的農(nóng)業(yè)地域類型。2.新課講授:第一課時,首先通過展示“世界大牧場放牧業(yè)分布圖”,引出對大牧場放牧業(yè)的初步認識,了解其分布范圍;然后通過展示“潘帕斯草原的地形圖”“氣候圖”和“牧牛業(yè)景觀圖”,討論分析大牧場放牧業(yè)形成的區(qū)位條件,并進行案例分析,學(xué)習該種農(nóng)業(yè)的特點;最后,理論聯(lián)系實際,展示:“中國地形圖”“氣候圖”“人口圖”“交通圖”和“內(nèi)蒙古牧區(qū)圖”,分組討論我國內(nèi)蒙古地區(qū)能否采用潘帕斯草原大牧場放牧業(yè)的生產(chǎn)模式。第二課時,首先通過設(shè)問順利從大牧場放牧業(yè)轉(zhuǎn)入乳蓄業(yè),通過講述讓學(xué)生了解乳蓄業(yè)的概念;然后通過展示世界乳畜業(yè)分布圖,了解乳蓄業(yè)主要分布在哪些地區(qū);接著,通過西歐乳蓄業(yè)的案例分析,得到乳蓄業(yè)發(fā)展的區(qū)位因素及其特點。
【這部分的設(shè)計目的,要學(xué)生明白熱帶雨林只是一個案例,我們的目的是要合理開發(fā)和保護全世界的森林。由森林的開發(fā)與保護來明確區(qū)域發(fā)展過程中產(chǎn)生的環(huán)境問題,危害及治理保護措施?!咳缓笾R遷移——東北林區(qū)的開發(fā)與保護介紹東北地區(qū)的森林材料:東北林區(qū)是我國最大的天然林區(qū),主要分布于大、小興安嶺及長白山地,在平衡大氣成分、凈化空氣、補給土壤有機質(zhì)、涵養(yǎng)水源、保持水土、改善地方氣候有重要的作用。它還是我國最大的采伐基地,宜林地區(qū)廣,森林樹種豐富。 東北林區(qū)開發(fā)中的問題及影響點撥:由于人類的嚴重超采,采育脫節(jié),亂砍濫伐,毀林開荒,再加上森林火災(zāi),東北林區(qū)的面積在銳減,帶來了嚴重的生態(tài)惡化。我們該如何開發(fā)和保護東北地區(qū)的森林呢?
教師活動:(1)組織學(xué)生回答相關(guān)結(jié)論,小組之間互相補充評價完善。教師進一步概括總結(jié)。(2)對學(xué)生的結(jié)論予以肯定并表揚優(yōu)秀的小組,對不理想的小組予以鼓勵。(3)多媒體投放板書二:超重現(xiàn)象:物體對支持物的壓力(或?qū)覓煳锏睦?大于物體所受到的重力的情況稱為超重現(xiàn)象。實質(zhì):加速度方向向上。失重現(xiàn)象:物體對支持物的壓力(或?qū)覓煳锏睦?小于物體所受到的重力的情況稱為失重現(xiàn)象。實質(zhì):加速度方向向下。(4)運用多媒體展示電梯中的現(xiàn)象,引導(dǎo)學(xué)生在感性認識的基礎(chǔ)上進一步領(lǐng)會基本概念。4.實例應(yīng)用,結(jié)論拓展:教師活動:展示太空艙中宇航員的真實生活,引導(dǎo)學(xué)生應(yīng)用本節(jié)所學(xué)知識予以解答。學(xué)生活動:小組討論后形成共識。教師活動:(1)引導(dǎo)學(xué)生分小組回答相關(guān)問題,小組間互相完善補充,教師加以規(guī)范。(2)指定學(xué)生完成導(dǎo)學(xué)案中“思考與討論二”的兩個問題。
學(xué)生借助對對聯(lián)的賞析,回味杜甫窮年漂泊的一生,體會杜甫作為一個深受儒家思想影響的讀書人,忠君念闕,心系蒼生的偉大情懷。(這一設(shè)計理念源于孟子所云:“誦其文,讀其詩,不知其人,可乎?是以論其世也?!敝苏撌朗氰b賞詩歌的第一步 )(二)研讀課文1、初讀,朗讀吟誦,感知韻律美。要求學(xué)生讀準字音,讀懂句意,體會律詩的節(jié)奏、押韻的順暢之美。2、再讀,披詞入情,感受感情美。讓學(xué)生用一個字概括這首詩的情感內(nèi)容。(此教學(xué)設(shè)計是從新課標要求的文學(xué)作品應(yīng)先整體感知,培養(yǎng)學(xué)生歸納推理的邏輯思維能力出發(fā)進行的設(shè)計。)其答案是一個“悲”字,由此輻射出兩個問題:詩人因何而“悲”?如何寫“悲”?(此問題設(shè)計順勢而出,目的在于培養(yǎng)學(xué)生探究問題的能力。)
知識探究(一):普查與抽查像人口普查這樣,對每一個調(diào)查調(diào)查對象都進行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個調(diào)查中,我們把調(diào)查對象的全體稱為總體,組成總體的每一個調(diào)查對象稱為個體。為了強調(diào)調(diào)查目的,也可以把調(diào)查對象的某些指標的全體作為總體,每一個調(diào)查對象的相應(yīng)指標作為個體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經(jīng)常進行。為了及時掌握全國人口變動狀況,我國每年還會進行一次人口變動情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個體進行調(diào)查,并以此為依據(jù)對總體的情況作出估計和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數(shù)稱為樣本量。
三個“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學(xué)的重要內(nèi)容,具有豐富的內(nèi)涵和密切的聯(lián)系,同時也是研究包含二次曲線在內(nèi)的許多內(nèi)容的工具 高考試題中近一半的試題與這三個“二次”問題有關(guān) 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標1. 通過探索,使學(xué)生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學(xué)生能夠運用二次函數(shù)及其圖像,性質(zhì)解決實際問題. 3. 滲透數(shù)形結(jié)合思想,進一步培養(yǎng)學(xué)生綜合解題能力。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問題;3.數(shù)學(xué)運算:解一元二次不等式;4.數(shù)據(jù)分析:一元二次不等式解決實際問題;5.數(shù)學(xué)建模:運用數(shù)形結(jié)合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。
本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關(guān)的化簡、求值、證明問題.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學(xué)運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學(xué)建模:學(xué)生體會到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.
②癌癥患者在治療過程中,會有很大的身體損耗,而黃鱔有很好的滋補作用,適當吃一點黃鱔,既能夠為患者補充營養(yǎng),也能夠提高患者的身體免疫力。 (來源于報紙)經(jīng)過討論交流,每一組一名同學(xué)自主發(fā)言,老師點撥,最后形成小結(jié)。看來源 要權(quán)威發(fā)布,不要道聽途說看內(nèi)容 要事實清晰,不要模糊遺漏看立場 要客觀公允,不要情緒煽動看邏輯 要嚴謹準確,不要簡單斷言情感判斷 理性判斷 理性表達(四)活動三,重實踐新課標提到,語文課程應(yīng)引導(dǎo)學(xué)生在真實的語言運用情境中,通過自主的語言實踐活動,積累經(jīng)驗,把握規(guī)律,培養(yǎng)能力。據(jù)此,我設(shè)計了以下貼近學(xué)生生活、可參與性強的活動。多媒體展示案例,仍然是先討論交流,再自主發(fā)言,說出案例有哪些問題。這是某校園論壇上的一則尋物啟示。
四、 學(xué)法指導(dǎo)1、查閱資料,了解詩人寫這首詩的處境,通過知人論世,理解詩歌。2、反復(fù)誦讀,聯(lián)系具體語境,品味詩歌的內(nèi)涵,感受詩歌的意蘊。3、欣賞詩人相關(guān)的其他作品及名言,在理解、感受詩歌的基礎(chǔ)上,領(lǐng)會詩人在詩歌中傳達出來的精神,樹立自我意識。五、教學(xué)過程環(huán)節(jié)一 常識補充1、文學(xué)革命:開始于1917年。它是晚清文學(xué)改良運動在新的歷史條件下的發(fā)展,是適應(yīng)以思想革命為主要內(nèi)容的新文化運動而發(fā)生的。是新文化運動的一個組成部分,對封建思想的批判必然地轉(zhuǎn)向?qū)Ψ饨ㄖ髁x文學(xué)的攻擊,反對文言,提倡白話,反對舊文學(xué),是提倡新文學(xué)的一場文學(xué)革命運動。在中國文學(xué)史上豎起一個鮮明的界碑,標示著古典文學(xué)的結(jié)束,現(xiàn)代文學(xué)的起始。主要從詩歌、小說、戲劇、散文四個文學(xué)領(lǐng)域開展。2、① 現(xiàn)代詩歌:指“五四運動”至中華人民共和國成立以來的詩歌。中國近現(xiàn)代詩歌的主體新詩,誕生于“五四”新文化運動。
客觀世界中的各種各樣的運動變化現(xiàn)象均可表現(xiàn)為變量間的對應(yīng)關(guān)系,這種關(guān)系常??捎煤瘮?shù)模型來描述,并且通過研究函數(shù)模型就可以把我相應(yīng)的運動變化規(guī)律.課程目標1、能夠找出簡單實際問題中的函數(shù)關(guān)系式,初步體會應(yīng)用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型解決實際問題; 2、感受運用函數(shù)概念建立模型的過程和方法,體會一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型在數(shù)學(xué)和其他學(xué)科中的重要性. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:總結(jié)函數(shù)模型; 2.邏輯推理:找出簡單實際問題中的函數(shù)關(guān)系式,根據(jù)題干信息寫出分段函數(shù); 3.數(shù)學(xué)運算:結(jié)合函數(shù)圖象或其單調(diào)性來求最值. ; 4.數(shù)據(jù)分析:二次函數(shù)通過對稱軸和定義域區(qū)間求最優(yōu)問題; 5.數(shù)學(xué)建模:在具體問題情境中,運用數(shù)形結(jié)合思想,將自然語言用數(shù)學(xué)表達式表示出來。 重點:運用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型的處理實際問題;難點:運用函數(shù)思想理解和處理現(xiàn)實生活和社會中的簡單問題.
本節(jié)課是在學(xué)習了三角函數(shù)圖象和性質(zhì)的前提下來學(xué)習三角函數(shù)模型的簡單應(yīng)用,進一步突出函數(shù)來源于生活應(yīng)用于生活的思想,讓學(xué)生體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學(xué)“建?!彼枷?從而培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力.課程目標1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會用三角函數(shù)模型解決一些簡單的實際問題.2.實際問題抽象為三角函數(shù)模型. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯抽象:實際問題抽象為三角函數(shù)模型問題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實際問題中抽取基本的數(shù)學(xué)關(guān)系來建立數(shù)學(xué)模型; 3.數(shù)學(xué)運算:實際問題求解; 4.數(shù)學(xué)建模:體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學(xué)建模思想,提高學(xué)生的建模、分析問題、數(shù)形結(jié)合、抽象概括等能力.
它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進行求值、化簡、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運算能力,但在數(shù)學(xué)的應(yīng)用意識與應(yīng)用能力方面尚需進一步培養(yǎng).課程目標1.能用二倍角公式推導(dǎo)出半角公式,體會三角恒等變換的基本思想方法,以及進行簡單的應(yīng)用. 2.了解三角恒等變換的特點、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進行三角函數(shù)式的化簡、求值以及證明,進而進行簡單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學(xué)運算:三角函數(shù)式的求值.
由于三角函數(shù)是刻畫周期變化現(xiàn)象的數(shù)學(xué)模型,這也是三角函數(shù)不同于其他類型函數(shù)的最重要的地方,而且對于周期函數(shù),我們只要認識清楚它在一個周期的區(qū)間上的性質(zhì),那么它的性質(zhì)也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來作圖,從畫出的圖形中觀察得出五個關(guān)鍵點,得到“五點法”畫正弦函數(shù)、余弦函數(shù)的簡圖.課程目標1.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯(lián)系. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯(lián)系; 3.直觀想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學(xué)運算:五點作圖; 5.數(shù)學(xué)建模:通過正弦、余弦圖象圖像,解決不等式問題及零點問題,這正是數(shù)形結(jié)合思想方法的應(yīng)用.