(四)、彈性勢能(據(jù)課時情況,可以讓學(xué)生自學(xué))生活中還有一些物體既沒有運動也沒有很大的高度卻同樣“儲存”著能量,哪怕它只是孩童手里的玩具(圖片:彈弓)。張緊的弓一撒手就會對箭支做功改變它的動能,松弛的弓有這樣的本領(lǐng)嗎?同樣是弓前者具有能量而后者沒有,那么什么情況下物體才具有這種能量呢?張緊的弓在恢復(fù)原狀的過程會對外做功,但是拉斷的弓還能有做功的本領(lǐng)嗎?1.定義:物體由于發(fā)生彈性形變而具有的能量叫做彈性勢能。2.彈性勢能的大小與哪些因素有關(guān)呢?3、勢能由相互作用的物體的相對位置決定的能量。重力勢能:由地球和物體間相對位置決定。彈性勢能:由發(fā)生形變的各部分的相對位置決定。(五).反饋練習(xí)1. 物體在運動過程中,克服重力做功50J, 則( )A.重力做功為50JB.物體的重力勢能一定增加50JC.物體的重力勢能一定減少50JD.重力做功為-50J
在同一個直角坐標,做出兩個不同彈簧的F—X圖象,然后進行比較。圖象法處理數(shù)據(jù)更為直觀,更容易得出物理變化規(guī)律,且該種方法處理數(shù)據(jù)能更好地減小實驗的偶然誤差。最后老師歸納總結(jié):得出胡克定律:F=KX(K為彈簧的頸度系數(shù))[設(shè)計意圖:在探究彈力的大小與形變的定量關(guān)系時,由學(xué)生進行猜想、實驗和得出規(guī)律,并利用信息技術(shù)計算機繪制F—X圖象,充分利用信息技術(shù)資源和物理學(xué)科的整合。能較好地體現(xiàn)以學(xué)生為主的新的教學(xué)理念。對探究實驗過程教師加以指導(dǎo),使學(xué)生學(xué)會團結(jié)合作、學(xué)會探究物理規(guī)律;再加上熟練信息技術(shù),更有效地提高學(xué)習(xí)效率。](五)彈力的應(yīng)用(圖片,視頻播放:射箭)[設(shè)計意圖:讓學(xué)生知道產(chǎn)品設(shè)計離不開物理理論,做到從實踐到理論,再從理論到實踐的學(xué)習(xí)過程。](六)開放式問題(視頻播放:撐桿跳高、跳水);提出問題:通過本節(jié)內(nèi)容的學(xué)習(xí),請同學(xué)們開放式地討論①從形變與彈力知識去思考,撐桿跳高運動員跳得這么高的主要原因是什么?②跳水運動員在空中滯空時間主要由哪方面決定?
進一步引導(dǎo)學(xué)生思考利用數(shù)學(xué)知識可寫成等式F=kma學(xué)生很自然就會思考比列系數(shù)K應(yīng)該是多少?通過教師引導(dǎo)學(xué)生舉例各國長度單位不同(如英國:英里、碼、英尺、英寸;中國:市里、市丈、市尺、市寸、市分 )導(dǎo)致交流不便。為了適應(yīng)各國交流需要國際計量局規(guī)定了一套統(tǒng)一的單位,稱為國際單位制 。取不同的單位制K是不同的,為了簡潔方便,在選取了質(zhì)量和加速度的國際單位(Kg, m/s2)時規(guī)定K=1。那么就有;F=ma為了紀念牛頓,就把能使1kg物體獲得1m/s2加速度的力稱做一牛頓,用符號N表示問題:實際物體受力往往不止一個,多個力情況應(yīng)該怎么辦呢?平行四邊形法則進一步引導(dǎo)學(xué)生得出牛頓第二定律更一般的表達式: F合=ma思考.討論我們用力提一個很重的箱子,卻提不動它。這個力產(chǎn)生了加速度嗎?要是產(chǎn)生了,箱子的運動狀態(tài)卻并沒有改變。為什么?
研究一種物理現(xiàn)象,總是要先從現(xiàn)象的描述入手。機械運動作為自然界最簡單和最基本的運動形態(tài),它所描述的是物體空間位置隨時間變化的情況。因此,本節(jié)學(xué)習(xí)描述質(zhì)點做機械運動需要時刻、時間間隔和位移等概念。相當一部分高一學(xué)生在具體過程中難以區(qū)別時刻和時間間隔。另外,由于思維的定式,在第一次接觸既要考慮大小又要考慮方向的問題時,會因不適應(yīng)造成學(xué)習(xí)困難。所以,區(qū)別“路程與位移”“時刻和時間間隔”是教學(xué)的重難點所在。學(xué)習(xí)這些內(nèi)容的過程與方法對學(xué)習(xí)速度和加速度可以起到奠定基礎(chǔ)的作用。教學(xué)的對象是高一的學(xué)生,這一時期的學(xué)生處在好奇善問、創(chuàng)新意識強烈的青少年期。對于生活中出現(xiàn)的各種現(xiàn)象具有濃厚的興趣。但他們的思維還停留在簡單的代數(shù)運算階段,對于矢量和矢量運算的理性認識幾乎沒有。且對生活中出現(xiàn)的時間、時刻、時間間隔等不能做出很好的區(qū)分,對時常提及的路程、距離等形成了模糊的前概念。
學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)運算性質(zhì),有了這些知識作儲備,教科書通過利用指數(shù)運算性質(zhì),推導(dǎo)對數(shù)的運算性質(zhì),再學(xué)習(xí)利用對數(shù)的運算性質(zhì)化簡求值。課程目標1、通過具體實例引入,推導(dǎo)對數(shù)的運算性質(zhì);2、熟練掌握對數(shù)的運算性質(zhì),學(xué)會化簡,計算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)的運算性質(zhì);2.邏輯推理:換底公式的推導(dǎo);3.數(shù)學(xué)運算:對數(shù)運算性質(zhì)的應(yīng)用;4.數(shù)學(xué)建模:在熟悉的實際情景中,模仿學(xué)過的數(shù)學(xué)建模過程解決問題.重點:對數(shù)的運算性質(zhì),換底公式,對數(shù)恒等式及其應(yīng)用;難點:正確使用對數(shù)的運算性質(zhì)和換底公式.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入回顧指數(shù)性質(zhì):(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對數(shù)有哪些性質(zhì)?如 要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進一步觀察.研探.
對數(shù)與指數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)的基礎(chǔ)上通過實例總結(jié)歸納對數(shù)的概念,通過對數(shù)的性質(zhì)和恒等式解決一些與對數(shù)有關(guān)的問題.課程目標1、理解對數(shù)的概念以及對數(shù)的基本性質(zhì);2、掌握對數(shù)式與指數(shù)式的相互轉(zhuǎn)化;數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)的概念;2.邏輯推理:推導(dǎo)對數(shù)性質(zhì);3.數(shù)學(xué)運算:用對數(shù)的基本性質(zhì)與對數(shù)恒等式求值;4.數(shù)學(xué)建模:通過與指數(shù)式的比較,引出對數(shù)定義與性質(zhì).重點:對數(shù)式與指數(shù)式的互化以及對數(shù)性質(zhì);難點:推導(dǎo)對數(shù)性質(zhì).教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入已知中國的人口數(shù)y和年頭x滿足關(guān)系 中,若知年頭數(shù)則能算出相應(yīng)的人口總數(shù)。反之,如果問“哪一年的人口數(shù)可達到18億,20億,30億......”,該如何解決?要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進一步觀察.研探.
例7 用描述法表示拋物線y=x2+1上的點構(gòu)成的集合.【答案】見解析 【解析】 拋物線y=x2+1上的點構(gòu)成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變設(shè)問]本題中點的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實數(shù).變式2.[變條件,變設(shè)問]本題中點的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實數(shù).解題技巧(認識集合含義的2個步驟)一看代表元素,是數(shù)集還是點集,二看元素滿足什么條件即有什么公共特性。
本節(jié)課選自《普通高中課程標準數(shù)學(xué)教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學(xué)方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學(xué)生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學(xué)生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數(shù)學(xué)抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學(xué)運算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學(xué)思想方法;
學(xué)生在初中學(xué)習(xí)了 ~ ,但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.因此為了準確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學(xué)運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉(zhuǎn)一周回到起始位置,在這個過程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.
知識探究(一):普查與抽查像人口普查這樣,對每一個調(diào)查調(diào)查對象都進行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個調(diào)查中,我們把調(diào)查對象的全體稱為總體,組成總體的每一個調(diào)查對象稱為個體。為了強調(diào)調(diào)查目的,也可以把調(diào)查對象的某些指標的全體作為總體,每一個調(diào)查對象的相應(yīng)指標作為個體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經(jīng)常進行。為了及時掌握全國人口變動狀況,我國每年還會進行一次人口變動情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個體進行調(diào)查,并以此為依據(jù)對總體的情況作出估計和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數(shù)稱為樣本量。
《奇偶性》內(nèi)容選自人教版A版第一冊第三章第三節(jié)第二課時;函數(shù)奇偶性是研究函數(shù)的一個重要策略,因此奇偶性成為函數(shù)的重要性質(zhì)之一,它的研究也為今后指對函數(shù)、冪函數(shù)、三角函數(shù)的性質(zhì)等后續(xù)內(nèi)容的深入起著鋪墊的作用.課程目標1、理解函數(shù)的奇偶性及其幾何意義;2、學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì);3、學(xué)會判斷函數(shù)的奇偶性.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:用數(shù)學(xué)語言表示函數(shù)奇偶性;2.邏輯推理:證明函數(shù)奇偶性;3.數(shù)學(xué)運算:運用函數(shù)奇偶性求參數(shù);4.數(shù)據(jù)分析:利用圖像求奇偶函數(shù);5.數(shù)學(xué)建模:在具體問題情境中,運用數(shù)形結(jié)合思想,利用奇偶性解決實際問題。重點:函數(shù)奇偶性概念的形成和函數(shù)奇偶性的判斷;難點:函數(shù)奇偶性概念的探究與理解.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。
一、復(fù)習(xí)回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學(xué)們思考回答點P關(guān)于原點、x軸、y軸對稱的三個點的坐標是什么?【答案】點P(x, y)關(guān)于原點對稱點P1(-x, -y)點P(x, y)關(guān)于x軸對稱點P2(x, -y) 點P(x, y)關(guān)于y軸對稱點P3(-x, y)
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學(xué)必修1第四章第4.3.2節(jié)《對數(shù)的運算》。其核心是弄清楚對數(shù)的定義,掌握對數(shù)的運算性質(zhì),理解它的關(guān)鍵就是通過實例使學(xué)生認識對數(shù)式與指數(shù)式的關(guān)系,分析得出對數(shù)的概念及對數(shù)式與指數(shù)式的 互化,通過實例推導(dǎo)對數(shù)的運算性質(zhì)。由于它還與后續(xù)很多內(nèi)容,比如對數(shù)函數(shù)及其性質(zhì),這也是高考必考內(nèi)容之一,所以在本學(xué)科有著很重要的地位。解決重點的關(guān)鍵是抓住對數(shù)的概念、并讓學(xué)生掌握對數(shù)式與指數(shù)式的互化;通過實例推導(dǎo)對數(shù)的運算性質(zhì),讓學(xué)生準確地運用對數(shù)運算性質(zhì)進行運算,學(xué)會運用換底公式。培養(yǎng)學(xué)生數(shù)學(xué)運算、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對數(shù)的概念,能進行指數(shù)式與對數(shù)式的互化;2、了解常用對數(shù)與自然對數(shù)的意義,理解對數(shù)恒等式并能運用于有關(guān)對數(shù)計算。
函數(shù)在高中數(shù)學(xué)中占有很重要的比重,因而作為函數(shù)的第一節(jié)內(nèi)容,主要從三個實例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結(jié)合三要素判斷函數(shù)相等.課程目標1.理解函數(shù)的定義、函數(shù)的定義域、值域及對應(yīng)法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學(xué)會求函數(shù)的定義域與函數(shù)值。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:通過教材中四個實例總結(jié)函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學(xué)運算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運用分離常數(shù)法和換元法求值域;5.數(shù)學(xué)建模:通過從實際問題中抽象概括出函數(shù)概念的活動,培養(yǎng)學(xué)生從“特殊到一般”的分析問題的能力,提高學(xué)生的抽象概括能力。重點:函數(shù)的概念,函數(shù)的三要素。難點:函數(shù)概念及符號y=f(x)的理解。
《基本不等式》在人教A版高中數(shù)學(xué)第一冊第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導(dǎo)和證明過程。本章一直在研究不等式的相關(guān)問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。課程目標1.掌握基本不等式的形式以及推導(dǎo)過程,會用基本不等式解決簡單問題。2.經(jīng)歷基本不等式的推導(dǎo)與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學(xué)的嚴謹性。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:基本不等式的形式以及推導(dǎo)過程;2.邏輯推理:基本不等式的證明;3.數(shù)學(xué)運算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實際問題;5.數(shù)學(xué)建模:利用函數(shù)的思想和基本不等式解決實際問題,提升學(xué)生的邏輯推理能力。重點:基本不等式的形成以及推導(dǎo)過程和利用基本不等式求最值;難點:基本不等式的推導(dǎo)以及證明過程.
本節(jié)主要內(nèi)容是三角函數(shù)的誘導(dǎo)公式中的公式二至公式六,其推導(dǎo)過程中涉及到對稱變換,充分體現(xiàn)對稱變換思想在數(shù)學(xué)中的應(yīng)用,在練習(xí)中加以應(yīng)用,讓學(xué)生進一步體會 的任意性;綜合六組誘導(dǎo)公式總結(jié)出記憶誘導(dǎo)公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數(shù)學(xué)思想的探究過程,培養(yǎng)學(xué)生用聯(lián)系、變化的辯證唯物主義觀點去分析問題的能力。誘導(dǎo)公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學(xué)生能熟練的掌握和應(yīng)用。課程目標1.借助單位圓,推導(dǎo)出正弦、余弦第二、三、四、五、六組的誘導(dǎo)公式,能正確運用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關(guān)三角函數(shù)求值、化簡和恒等式證明問題2.通過公式的應(yīng)用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。
培養(yǎng)學(xué)生合作交流意識和探究問題的能力,這一部分知識層層遞進,符合學(xué)生由特殊到一般、由簡單到復(fù)雜的認知規(guī)律。4、互動探究(1)極限思想的滲透讓學(xué)生閱讀“思考與討論”小版塊.培養(yǎng)學(xué)生的自學(xué)和閱讀能力提出下列問題,進行分組討論:a、用課本上的方法估算位移,其結(jié)果比實際位移大還是???為什么?b、為了提高估算的精確度,時間間隔小些好還是大些好?為什么?針對學(xué)生回答的多種可能性加以評價和進一步指導(dǎo)。讓學(xué)生從討論的結(jié)果中歸納得出:△t越小,對位移的估算就越精確。滲透極限的思想。通過小組內(nèi)分工合作,討論交流,培養(yǎng)學(xué)生交流合作的精神,以及搜集信息、處理信息的能力;通過小組間對比總結(jié),使學(xué)生學(xué)會在對比中發(fā)現(xiàn)問題,在解決問題過程中提高個人能力;
在這段教學(xué)中可以插入世界主要鐵礦、煤礦,以及我國主要的礦產(chǎn)基地、鋼鐵生產(chǎn)基地的相關(guān)內(nèi)容,不失為區(qū)域地理知識的很好補充和鞏固。那么從現(xiàn)狀來看我國的鋼鐵產(chǎn)業(yè)基地多數(shù)污染較為嚴重,可見工業(yè)區(qū)位的選擇同樣要顧及到環(huán)境的因素,由此引入下一部分的內(nèi)容。除了傳統(tǒng)意義上的工業(yè)區(qū)位因素外,環(huán)境、政策以及決策者的理念和心理等日益受到人們的關(guān)注。在這段文字的處理上,只需進行概念、道理上的陳述即可,重點要放在污染工業(yè)在城市中的布局這一知識點上。首先要了解什么工業(yè)會造成怎樣的污染,然后根據(jù)污染的類別分別講解不同的應(yīng)對方略,最后將配以適當?shù)睦}以期提高學(xué)生的整體把握程度和綜合運用能力。最后將對本節(jié)內(nèi)容進行小結(jié),要在小結(jié)中闡述清楚本節(jié)課的兩大內(nèi)容:即工業(yè)的區(qū)位因素和工業(yè)區(qū)位的選擇。然后點明本節(jié)課的主要知識點、難點、重點。在時間允許的情況下可以適當安排幾道有關(guān)主導(dǎo)產(chǎn)業(yè)和城市工業(yè)布局的例題加以練習(xí)。
設(shè)計意圖:幾道例題及練習(xí)題,其中例1小車由靜止啟動開始行駛,以加速度 做勻加速運動,求2s后的速度大?。窟M而變式到:小車遇到紅燈剎車……,充分體現(xiàn)了“從生活到物理,從物理到社會”的物理教學(xué)理念;例題及練習(xí)題由淺入深、由易到難、各有側(cè)重,體現(xiàn)新課標提出的讓不同的學(xué)生在物理上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計意圖是反饋教學(xué),內(nèi)化知識。(6) 小結(jié)歸納,拓展深化我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識的簡單羅列,而應(yīng)該是優(yōu)化認知結(jié)構(gòu),完善知識體系的一種有效手段,為充分發(fā)揮學(xué)生的主題作用,從學(xué)習(xí)的知識、方法、體驗是那個方面進行歸納,我設(shè)計了這么三個問題:① 通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些知識;② 通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么;③ 通過本節(jié)課的學(xué)習(xí),你掌握了哪些學(xué)習(xí)物理的方法?
尊敬的各位領(lǐng)導(dǎo),老師,親愛的同學(xué)們:大家早上好!今天由我來為大家做國旗下的演講,我演講的主題是“中華孝道文化的傳承與創(chuàng)新”。同學(xué)們應(yīng)該對剛剛過去的清明節(jié)記憶猶新,也對即將到來的三月三歌圩節(jié)充滿期待吧?可,是否有同學(xué)知道,這兩個節(jié)日與中國孝道文化有著緊密的聯(lián)系呢?清明節(jié)返鄉(xiāng)祭祖表達了對已逝親人的思念與尊敬;三月三歌圩節(jié)中的師公舞蘊含著濃濃的孝道文化,無一不在說明著中國傳統(tǒng)與孝道文化的密不可分。孝道文化,即關(guān)愛父母長輩,尊老敬老的文化傳統(tǒng),是中國古代社會最基本的道德規(guī)范,也是中華民族尊奉的傳統(tǒng)美德。它強調(diào)幼敬長,下尊上,要求晚輩尊敬老人,子女孝敬父母,愛護、照顧、贍養(yǎng)老人,使老人們頤養(yǎng)天年,享受天倫之樂。孝道文化經(jīng)過千年的歷史發(fā)展,已成為中華民族繁衍生息、代代相傳的優(yōu)良傳統(tǒng)和核心價值觀。孝敬是太陽,給人溫暖;孝敬是大山,給人依靠;孝敬是水晶,是一筆寶貴的財富。俗話說,百善孝為先。古有晉人王祥臥冰求鯉,近有將軍陳毅探望病母,古今中外孝的事例可謂數(shù)不勝數(shù)。俗話說,百善孝為先。從古至今,孝順不僅是衡量個人道德水平高低的重要標準,也是社會秩序穩(wěn)定運行的重要保障。然而在今天,有多少人又把這種傳統(tǒng)的孝繼承下來呢?是否社會在不斷發(fā)展,人的物質(zhì)生活水平不斷提高,那么就可以對基本的孝的美德嗤之以鼻,置之一邊呢?難道孝的故事永遠只能停留在"感動中國"的歷史中嗎?這答案顯然不是。孝道是我們每個人要秉持一生,永遠的傳承并發(fā)揚下去的。