1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關系是( )A.內切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經過C1和C2的交點且和l相切的圓的方程.解:設所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數m的范圍;(2)若該直線的斜率k=1,求實數m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
2、培養(yǎng)幼兒對音樂的感受力、理解力,發(fā)揮幼兒的想象。3、熟悉音樂,能用不同的肢體動作表現音樂形象,增強幼兒動作的協(xié)調性和對美的感受。 活動準備:1、磁帶《風中的童話》ABA段。2、多媒體課件。 活動過程:一、通過游戲幫助幼兒理解音樂三段體結構。1、根據弦外音做適合的動作。(柔和→活潑→柔和)2、再次欣賞音樂,區(qū)分段落。 ?。?)動作是怎樣變化的?音樂發(fā)生了什么變化?(欣賞) ?。?)音樂到底發(fā)生了什么變化?(出示~~~~~、∧∧∧∧∧、~~~~~) ?。?)樂曲中有個小秘密,是什么? ?。?)整首樂曲可以分幾段?為什么? ?。?)小結:一首樂曲分成了3段,這種形式的樂曲稱為三段體。剛才我們聽到的樂曲,其中第3段音樂和第1段音樂是重復的、一樣的,只有第2段是不一樣的,這樣形式的樂曲也叫三段體,它是三段體的一種特殊形式。
5、課本練習:P129引導學生運用隨機數表來模擬試驗過程并給予解答。問題2:有四個鬮,其中兩個分別代表兩件獎品,四個人按順序依次抓鬮來決定這兩件獎品的歸屬,先抓的人中獎率一定大嗎?教法:可組織學生用試驗的方法來說明問題,對于試驗的結果是有說服力的,很容易使學生相信摸獎的次序對中獎的概率沒有影響。問題3:彩民甲研究了近幾期這種體育彩票的中獎號碼,發(fā)現數字06和08出現的次數最多,他認為,06和08是“幸運號碼”,因此,他在所買的每一注彩票中都選上了06和08。你認為他這樣做有道理嗎?教法說明:要讓學生看到試驗方法對試驗結果的影響:1、 因為開獎用的36個球是均勻的、無差別的,所以每個號碼被選為中獎號碼的可能性是一樣的,不存在“幸運號碼”。
說教材本文是部編版八年級語文下冊第四單元的一篇課文,也是一篇幽默風趣的演講稿。文章介紹了王選先生一生的重要抉擇和貢獻,并將自己的一生的抉擇與祖國的發(fā)展密切結合起來。說學情學生對王選先生有一定的了解,在介紹他一生重要抉擇時學生更容易理解王選先生愛崗敬業(yè),勤奮工作的精神并深受鼓舞。教學目標1、識記王選極其重大貢獻2、識記課文主要詞語3、通讀全文,了解王選一生中經歷的幾次重大選擇。4、學習王選先生專注于科研、無私奉獻的精神教學重點王選一生中經歷的幾次重大選擇教學難點從這幾次選擇中分析王選先生的精神教學方法研讀法、討論法
(一)教材分析本節(jié)課是在學生已經學過除法和分數的意義以及分數與除法的關系的基礎上進行教學的。由于學生在理解比的意義上比較困難,教材并沒有采取直接給出“比”的概念的做法,而是密切聯系學生已有的生活經驗和學習經驗,提供了多種情境,引發(fā)學生的討論和思考,讓學生體會引入比的必要性,感受比在生活中的廣泛存在,也為“比的應用”“比例”等后續(xù)學習做好鋪墊。(二)教學目標在認真分析教材的基礎上,結合學生實際,我從知識、能力、情感等方面擬定了本節(jié)課的教學目標:知識目標:經歷從具體情境中抽象出比的過程,理解比的意義,能正確讀寫比,會求比值。能力目標:培養(yǎng)學生自主學習、獨立思考,能利用比的知識解決一些生活中的數學問題。情感目標:引導學生廣泛聯系生活實際,充分感受數學知識的美與樂趣,激發(fā)學生的求知欲望。
一、教材分析第四單元“發(fā)展社會主義市場經濟”旨在培養(yǎng)社會主義的建設者,高中生是未來社會主義現代化建設的主力軍,是將來參與市場經濟活動的主要角色,承擔著全面建設小康社會的重任,本課的邏輯分為兩目:第一目,從“總體小康到全面小康”。這一部分的邏輯結構如下:首先謳歌我國人民的生活水平達到總體小康這一偉大成就,然后從微觀和宏觀兩個方面介紹總體小康的成就。同時指出,我國現在達到的小康是低水平、不全面、發(fā)展不平衡的小康。第二目“經濟建設的新要求”。這一目專門介紹全面建設小康社會的經濟目標,也是學生要重點把握的內容。二、教學目標(一)知識目標(1)識記總體小康的建設成就在宏觀和微觀上的表現,全面建設小康社會的經濟建設目標。(2)理解低水平、不全面、發(fā)展很不平衡的小康,以及小康社會建設進程是不平衡的發(fā)展過程。(3)運用所學知識,初步分析全面建設小康社會的意義。
一、復習回顧,溫故知新1. 任意角三角函數的定義【答案】設角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導公式一 ,其中, 。終邊相同的角的同一三角函數值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數值有什么關系?【答案】相等(2).角 -α與α的終邊 有何位置關系?【答案】終邊關于x軸對稱(3).角 與α的終邊 有何位置關系?【答案】終邊關于y軸對稱(4).角 與α的終邊 有何位置關系?【答案】終邊關于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學們思考回答點P關于原點、x軸、y軸對稱的三個點的坐標是什么?【答案】點P(x, y)關于原點對稱點P1(-x, -y)點P(x, y)關于x軸對稱點P2(x, -y) 點P(x, y)關于y軸對稱點P3(-x, y)
知識探究(一):普查與抽查像人口普查這樣,對每一個調查調查對象都進行調查的方法,稱為全面調查(又稱普查)。 在一個調查中,我們把調查對象的全體稱為總體,組成總體的每一個調查對象稱為個體。為了強調調查目的,也可以把調查對象的某些指標的全體作為總體,每一個調查對象的相應指標作為個體。問題二:除了普查,還有其他的調查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經常進行。為了及時掌握全國人口變動狀況,我國每年還會進行一次人口變動情況的調查,根據抽取的居民情況來推斷總體的人口變動情況。像這樣,根據一定目的,從總體中抽取一部分個體進行調查,并以此為依據對總體的情況作出估計和判斷的方法,稱為抽樣調查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數稱為樣本量。
本節(jié)主要內容是三角函數的誘導公式中的公式二至公式六,其推導過程中涉及到對稱變換,充分體現對稱變換思想在數學中的應用,在練習中加以應用,讓學生進一步體會 的任意性;綜合六組誘導公式總結出記憶誘導公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數學思想的探究過程,培養(yǎng)學生用聯系、變化的辯證唯物主義觀點去分析問題的能力。誘導公式在三角函數化簡、求值中具有非常重要的工具作用,要求學生能熟練的掌握和應用。課程目標1.借助單位圓,推導出正弦、余弦第二、三、四、五、六組的誘導公式,能正確運用誘導公式將任意角的三角函數化為銳角的三角函數,并解決有關三角函數求值、化簡和恒等式證明問題2.通過公式的應用,了解未知到已知、復雜到簡單的轉化過程,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。
《奇偶性》內容選自人教版A版第一冊第三章第三節(jié)第二課時;函數奇偶性是研究函數的一個重要策略,因此奇偶性成為函數的重要性質之一,它的研究也為今后指對函數、冪函數、三角函數的性質等后續(xù)內容的深入起著鋪墊的作用.課程目標1、理解函數的奇偶性及其幾何意義;2、學會運用函數圖象理解和研究函數的性質;3、學會判斷函數的奇偶性.數學學科素養(yǎng)1.數學抽象:用數學語言表示函數奇偶性;2.邏輯推理:證明函數奇偶性;3.數學運算:運用函數奇偶性求參數;4.數據分析:利用圖像求奇偶函數;5.數學建模:在具體問題情境中,運用數形結合思想,利用奇偶性解決實際問題。重點:函數奇偶性概念的形成和函數奇偶性的判斷;難點:函數奇偶性概念的探究與理解.教學方法:以學生為主體,采用誘思探究式教學,精講多練。
《基本不等式》在人教A版高中數學第一冊第二章第2節(jié),本節(jié)課的內容是基本不等式的形式以及推導和證明過程。本章一直在研究不等式的相關問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內容也是之后基本不等式應用的必要基礎。課程目標1.掌握基本不等式的形式以及推導過程,會用基本不等式解決簡單問題。2.經歷基本不等式的推導與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數學的嚴謹性。數學學科素養(yǎng)1.數學抽象:基本不等式的形式以及推導過程;2.邏輯推理:基本不等式的證明;3.數學運算:利用基本不等式求最值;4.數據分析:利用基本不等式解決實際問題;5.數學建模:利用函數的思想和基本不等式解決實際問題,提升學生的邏輯推理能力。重點:基本不等式的形成以及推導過程和利用基本不等式求最值;難點:基本不等式的推導以及證明過程.
本節(jié)課選自《普通高中課程標準數學教科書-必修一》(人 教A版)第五章《三角函數》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數學抽象:角的概念;2.邏輯推理:象限角的表示;3.數學運算:判斷角所在象限;4.直觀想象:從特殊到一般的數學思想方法;
學生在初中學習了 ~ ,但是現實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.因此為了準確描述這些現象,本節(jié)課主要就旋轉度數和旋轉方向對角的概念進行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數學學科素養(yǎng)1.數學抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數學運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉一周回到起始位置,在這個過程中可以得到 ~ 范圍內的角.但是現實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.
一、項目內容1. 甲方委托乙方開發(fā)的軟件《_蘋果系統(tǒng)APP,安卓系統(tǒng)APP,網絡平臺__》(以下簡稱“本三個軟件”) 在安卓,蘋果,PC環(huán)境下運行的軟件,本三個軟件需求(以下簡稱“需求”)雙方協(xié)商確定。2.本合同APP和網絡平臺應用開發(fā)的欄目架構及相關功能開發(fā)細節(jié)由《APP和網絡平臺開發(fā)需求表》載明。二、合同價款和付款方式1.本合同總價款包括乙方相關的稅費及軟件開發(fā)期間辦理相關手續(xù)的所有費用。該價款為固定包干價,除上述款項外,甲方無需支付任何其它款項。2.付款方式:前期不要源碼的甲方總支付乙方費用是 27500元,預付定金為10000元,軟件和平臺做好交付可以使用付清前期不要源碼的費用的余額17500(留3000元質保金),即14500元后期甲方要回乙方源碼,乙方要另加收甲方27500元費用,并付清3000元的質保金三、開發(fā)進度自合同簽訂日起,甲方把鑰匙交給乙方匹配乙方將在_____30_______個工作日內完成客戶端開發(fā),此時間并包括審核和測試時間。 乙方的工作時間從本合同簽訂之日的次日起開始計算。
活動準備:1、磁帶《風中的童話》ABA段。2、多媒體課件?;顒舆^程:一、通過游戲幫助幼兒理解音樂三段體結構。1、根據弦外音做適合的動作。(柔和→活潑→柔和)2、再次欣賞音樂,區(qū)分段落。(1)動作是怎樣變化的?音樂發(fā)生了什么變化?(欣賞)(2)音樂到底發(fā)生了什么變化?(出示~~~~~、∧∧∧∧∧、~~~~~)(3)樂曲中有個小秘密,是什么?(4)整首樂曲可以分幾段?為什么?(5)小結:一首樂曲分成了3段,這種形式的樂曲稱為三段體。剛才我們聽到的樂曲,其中第3段音樂和第1段音樂是重復的、一樣的,只有第2段是不一樣的,這樣形式的樂曲也叫三段體,它是三段體的一種特殊形式。二、完整欣賞,再次感受音樂三段體。三、分段欣賞,利用圖片,幫助幼兒理解、感受音樂。(一)第一段:1、我們一段一段來聽。2、這段音樂給你的感受與哪幅畫給的感受是一樣的,為什么? 3、能用什么動作表現呢?
1、欣賞云的變化。2、發(fā)揮想象力。3、享受說兒歌的樂趣。4、鍛煉大小肌肉的活動能力。活動準備:課件、魔術棒、紙筆、錄音機、藍卡紙、雙面膠1、 提問引起幼兒的興趣:(1)出去玩時,下面是什么?上面是什么?(2)天空中有什么?
(一)說教材 《虞美人》選自高中語文統(tǒng)編版必修上冊·古詩詞誦讀?!队菝廊恕肥窃~中的代表作品,是李煜生命中最為重要的一首詞作,極具藝術魅力,對于陶冶學生的情操,豐富和積淀學生的人文素養(yǎng)意義非凡。(二)說學情總體來說,所教班級的學生基礎不強,學習意識略有偏差,在學習過程中需要教師深入淺出,不斷創(chuàng)造動口、動手、動腦的機會,他們才能更好地達成教學目標。(三)說教學目標根據教學內容和學情分析,確定如下教學目標(1)探究這首詞的內涵,了解李煜及其創(chuàng)作風格。(2)通過對本詞的品析,提高詞的鑒賞能力。(3)通過對比閱讀,體會李煜詞 “赤子之心” 、“以血書者”的特色,體味其深沉的亡國之恨和故國之思。
這幾段內容傳達出的是“要敬畏生命,尊重生命;更要敬畏大自然,尊重大自然,愛護大自然”的主旨內涵,因此讓學生通過自由朗讀的方式,再次體會馮至對這個消逝了的山村的細致的美好的描繪,感悟馮至傳達出的對生命,對自然的理解和思考。5.最后一個自然段的解讀依然是交給學生,先齊讀課文,再讓學生自主分享自己的體會或疑惑。但在這一環(huán)節(jié)我也設計了兩個我認為必須解答的兩個問題,一是怎么理解“在風雨如晦的時刻”;二是“意味不盡的關聯”是指什么。我認為這兩個問題一個涉及到寫作背景,一個涉及到對全文主旨的一個整體把握,能夠進一步幫助學生理解散文的深刻內涵和主旨,讓學生有意識的在閱讀散文過程中通過背景知識進行理解。既尊重學生的個性化解讀,又能夠讓學生有意義學習,完成預設的教學目標。如果學生沒有提到這兩處,那我就需要做出補充。