提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

中班數(shù)學(xué):小王子歷險(xiǎn)記課件教案

  • 小學(xué)美術(shù)人教版一年級(jí)上冊(cè)《第5課五彩的煙花》教學(xué)設(shè)計(jì)模板說(shuō)課稿

    小學(xué)美術(shù)人教版一年級(jí)上冊(cè)《第5課五彩的煙花》教學(xué)設(shè)計(jì)模板說(shuō)課稿

    2學(xué)情分析一年級(jí)學(xué)生對(duì)美術(shù)的興趣很高,對(duì)五顏六色的物體特別感興趣,孩子們課前做的準(zhǔn)備很好。3重點(diǎn)難點(diǎn)1.節(jié)日里煙花的畫(huà)法。2.油畫(huà)棒和水彩顏料相結(jié)合的涂色技巧。教學(xué)活動(dòng)活動(dòng)1【活動(dòng)】教案第5課五彩的煙花

  • 中英文簡(jiǎn)歷

    中英文簡(jiǎn)歷

    I just work in that era, the financial professional to the onlyperson impression is abacus accounting,there is nocertified publicaccountants,and no one heard four,no financial directo.

  • 安全教育日國(guó)旗下講話稿——強(qiáng)化安全意識(shí),提高避險(xiǎn)能力

    安全教育日國(guó)旗下講話稿——強(qiáng)化安全意識(shí),提高避險(xiǎn)能力

    老師們,同學(xué)們:大家好,今天講話的題目是:強(qiáng)化安全意識(shí),提高避險(xiǎn)能力。邁著堅(jiān)實(shí)的步伐,伴著豐富多彩的校園生活。我們已經(jīng)踏過(guò)了多半個(gè)三月,在這個(gè)生機(jī)盎然的三月即將結(jié)束之際,我們將迎來(lái)一個(gè)特殊的日子那就是:全國(guó)中小學(xué)安全宣傳教育日。十六年前,全國(guó)中小學(xué)安全宣傳教育日被國(guó)家有關(guān)部門(mén)確定于每年三月最后一周的星期一。今年教育日的主題是“強(qiáng)化安全意識(shí),提高避險(xiǎn)能力。”在這個(gè)特殊日子即將來(lái)臨之際,我們應(yīng)該怎樣做呢?一、從我做起,確保交通安全“沒(méi)有規(guī)矩,不成方圓”首先我們要認(rèn)真學(xué)習(xí)法律法規(guī),遵守交通規(guī)則,加強(qiáng)安全意識(shí),樹(shù)立交通安全文明公德。更要提升交通事故防范能力,尤其是上下學(xué)途中、學(xué)校高峰期,更要保持防范意識(shí)。

  • 小學(xué)美術(shù)人教版六年級(jí)下冊(cè)《第12課二十年后的學(xué)?!方虒W(xué)設(shè)計(jì)

    小學(xué)美術(shù)人教版六年級(jí)下冊(cè)《第12課二十年后的學(xué)?!方虒W(xué)設(shè)計(jì)

    2重點(diǎn)難點(diǎn)教學(xué)重點(diǎn)用各種方法、材料制作未來(lái)的學(xué)校模型。第一課時(shí):設(shè)計(jì)制作學(xué)校的平面圖第二課時(shí):設(shè)計(jì)制作學(xué)校的立體模型。教學(xué)難點(diǎn)大膽想象,小組協(xié)作,創(chuàng)想出與眾不同的學(xué)校創(chuàng)意。第一課時(shí):學(xué)校建筑的布局。第二課時(shí):設(shè)計(jì)與眾不同的未來(lái)的建筑。3教學(xué)過(guò)程3.1 第一學(xué)時(shí)

  • 學(xué)校突發(fā)事件應(yīng)急處置預(yù)案

    學(xué)校突發(fā)事件應(yīng)急處置預(yù)案

    1、信息報(bào)送。學(xué)校突發(fā)事件發(fā)生后,學(xué)校、班級(jí)、知情者應(yīng)立即將發(fā)生地點(diǎn)、時(shí)間等基本情況和有關(guān)信息立即報(bào)告學(xué)校應(yīng)急事件處置領(lǐng)導(dǎo)小組、校長(zhǎng)室。學(xué)校應(yīng)急事件處置領(lǐng)導(dǎo)小組、校長(zhǎng)室在規(guī)定時(shí)限內(nèi)將事件發(fā)生的時(shí)間、地點(diǎn)、經(jīng)過(guò)、危害程度、發(fā)展趨勢(shì)、所采取的處理措施,需要幫助解決的問(wèn)題等情況迅速報(bào)告鎮(zhèn)教委領(lǐng)導(dǎo)。

  • 人教版高中數(shù)學(xué)選修3分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(1)教學(xué)設(shè)計(jì)

    問(wèn)題1. 用一個(gè)大寫(xiě)的英文字母或一個(gè)阿拉伯?dāng)?shù)字給教室里的一個(gè)座位編號(hào),總共能編出多少種不同的號(hào)碼?因?yàn)橛⑽淖帜腹灿?6個(gè),阿拉伯?dāng)?shù)字共有10個(gè),所以總共可以編出26+10=36種不同的號(hào)碼.問(wèn)題2.你能說(shuō)說(shuō)這個(gè)問(wèn)題的特征嗎?上述計(jì)數(shù)過(guò)程的基本環(huán)節(jié)是:(1)確定分類(lèi)標(biāo)準(zhǔn),根據(jù)問(wèn)題條件分為字母號(hào)碼和數(shù)字號(hào)碼兩類(lèi);(2)分別計(jì)算各類(lèi)號(hào)碼的個(gè)數(shù);(3)各類(lèi)號(hào)碼的個(gè)數(shù)相加,得出所有號(hào)碼的個(gè)數(shù).你能舉出一些生活中類(lèi)似的例子嗎?一般地,有如下分類(lèi)加法計(jì)數(shù)原理:完成一件事,有兩類(lèi)辦法. 在第1類(lèi)辦法中有m種不同的方法,在第2類(lèi)方法中有n種不同的方法,則完成這件事共有:N= m+n種不同的方法.二、典例解析例1.在填寫(xiě)高考志愿時(shí),一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強(qiáng)項(xiàng)專(zhuān)業(yè),如表,

  • 人教版高中數(shù)學(xué)選修3分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(2)教學(xué)設(shè)計(jì)

    當(dāng)A,C顏色相同時(shí),先染P有4種方法,再染A,C有3種方法,然后染B有2種方法,最后染D也有2種方法.根據(jù)分步乘法計(jì)數(shù)原理知,共有4×3×2×2=48(種)方法;當(dāng)A,C顏色不相同時(shí),先染P有4種方法,再染A有3種方法,然后染C有2種方法,最后染B,D都有1種方法.根據(jù)分步乘法計(jì)數(shù)原理知,共有4×3×2×1×1=24(種)方法.綜上,共有48+24=72(種)方法.故選B.答案:B5.某藝術(shù)小組有9人,每人至少會(huì)鋼琴和小號(hào)中的一種樂(lè)器,其中7人會(huì)鋼琴,3人會(huì)小號(hào),從中選出會(huì)鋼琴與會(huì)小號(hào)的各1人,有多少種不同的選法?解:由題意可知,在藝術(shù)小組9人中,有且僅有1人既會(huì)鋼琴又會(huì)小號(hào)(把該人記為甲),只會(huì)鋼琴的有6人,只會(huì)小號(hào)的有2人.把從中選出會(huì)鋼琴與會(huì)小號(hào)各1人的方法分為兩類(lèi).第1類(lèi),甲入選,另1人只需從其他8人中任選1人,故這類(lèi)選法共8種;第2類(lèi),甲不入選,則會(huì)鋼琴的只能從6個(gè)只會(huì)鋼琴的人中選出,有6種不同的選法,會(huì)小號(hào)的也只能從只會(huì)小號(hào)的2人中選出,有2種不同的選法,所以這類(lèi)選法共有6×2=12(種).因此共有8+12=20(種)不同的選法.

  • 《小數(shù)的意義》說(shuō)課稿

    《小數(shù)的意義》說(shuō)課稿

    2、教材的重點(diǎn)和難點(diǎn)  小數(shù)的初步認(rèn)識(shí)是小學(xué)數(shù)學(xué)概念中較抽象,難理解的內(nèi)容。一位小數(shù)是十分之幾的分?jǐn)?shù)的另一種表示形式。學(xué)生雖然對(duì)分?jǐn)?shù)已有了初步的認(rèn)識(shí),也學(xué)過(guò)長(zhǎng)度單位、貨幣單位間的進(jìn)率,但理解小數(shù)的含義還是有一定的困難的。同時(shí)學(xué)生在以后的學(xué)習(xí)中,小數(shù)方面出現(xiàn)的很多問(wèn)題是屬于小數(shù)概念不清?! ∫虼耍斫庑?shù)的含義(一位小數(shù)表示十分之幾)既是本課時(shí)的重點(diǎn)、又是難點(diǎn)。在教學(xué)中要注意抓住分?jǐn)?shù)與小數(shù)的含義的關(guān)鍵?! 《?、說(shuō)學(xué)情  對(duì)四年級(jí)學(xué)生進(jìn)行學(xué)習(xí)前測(cè)表明:學(xué)生已經(jīng)初步掌握了分?jǐn)?shù)的基本知識(shí),會(huì)根據(jù)具體的情景寫(xiě)分?jǐn)?shù);會(huì)讀寫(xiě)小數(shù),能結(jié)合具體的計(jì)量單位說(shuō)出小數(shù)表示的實(shí)際含義,會(huì)進(jìn)行簡(jiǎn)單的一位小數(shù)的加減,會(huì)比較簡(jiǎn)單的兩位小數(shù)的大小;知道米、分米、厘米之間的進(jìn)率,知道厘米與毫米之間的進(jìn)率。這些知識(shí)都是本節(jié)課教學(xué)的起點(diǎn)?! ∪⒄f(shuō)學(xué)習(xí)目標(biāo)的確定  基于教材的編寫(xiě)意圖和學(xué)生的實(shí)際,我將本節(jié)課教學(xué)目標(biāo)確定為:  1、能通過(guò)觀察了解小數(shù)的產(chǎn)生,體會(huì)小數(shù)產(chǎn)生的必要性。借助熟悉的十進(jìn)制關(guān)系的現(xiàn)實(shí)原型多角度理解小數(shù)和分?jǐn)?shù)的關(guān)系,理解計(jì)數(shù)單位0.1、0.01、0.001。

  • 淡綠色英語(yǔ)外教幼兒班實(shí)習(xí)教師簡(jiǎn)歷

    淡綠色英語(yǔ)外教幼兒班實(shí)習(xí)教師簡(jiǎn)歷

    XXX軟件有限公司 20xx.01 – 20xx.01幼兒班教師負(fù)責(zé)與班級(jí)外教、助教協(xié)調(diào)好班級(jí)各項(xiàng)工作,定期召開(kāi)班務(wù)會(huì),做好總結(jié),同時(shí)傳達(dá)好工作安排,負(fù)責(zé)開(kāi)展組織家長(zhǎng)會(huì),家長(zhǎng)開(kāi)放日,親子活動(dòng),組織大大小小的活動(dòng)幾十場(chǎng),策劃活動(dòng)方案、擔(dān)任活動(dòng)的主持人工作。XXX軟件有限公司 20xx.01 – 20xx.01幼兒班教師擔(dān)任校內(nèi)助理實(shí)習(xí)生,在校實(shí)習(xí)期間,曾協(xié)助完成 30 余人外賓的來(lái)訪接待和研討會(huì)議的組織執(zhí)行,受到外賓和領(lǐng)導(dǎo)的高度肯定。實(shí)習(xí)結(jié)束后獲得公司上級(jí)與同事一致認(rèn)可,榮獲最佳新人獎(jiǎng)

  • 空間向量基本定理教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    空間向量基本定理教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過(guò)渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長(zhǎng)方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過(guò)線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過(guò)點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問(wèn)題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問(wèn)題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說(shuō)明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無(wú)關(guān),也就是說(shuō)公式也可寫(xiě)成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

  • 傾斜角與斜率教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    傾斜角與斜率教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過(guò)點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).

  • 兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問(wèn)題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過(guò)一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 人教版高中數(shù)學(xué)選擇性必修二變化率問(wèn)題教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二變化率問(wèn)題教學(xué)設(shè)計(jì)

    導(dǎo)語(yǔ)在必修第一冊(cè)中,我們研究了函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性等知識(shí),定性的研究了一次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)增長(zhǎng)速度的差異,知道“對(duì)數(shù)增長(zhǎng)” 是越來(lái)越慢的,“指數(shù)爆炸” 比“直線上升” 快得多,進(jìn)一步的能否精確定量的刻畫(huà)變化速度的快慢呢,下面我們就來(lái)研究這個(gè)問(wèn)題。新知探究問(wèn)題1 高臺(tái)跳水運(yùn)動(dòng)員的速度高臺(tái)跳水運(yùn)動(dòng)中,運(yùn)動(dòng)員在運(yùn)動(dòng)過(guò)程中的重心相對(duì)于水面的高度h(單位:m)與起跳后的時(shí)間t(單位:s)存在函數(shù)關(guān)系h(t)=-4.9t2+4.8t+11.如何描述用運(yùn)動(dòng)員從起跳到入水的過(guò)程中運(yùn)動(dòng)的快慢程度呢?直覺(jué)告訴我們,運(yùn)動(dòng)員從起跳到入水的過(guò)程中,在上升階段運(yùn)動(dòng)的越來(lái)越慢,在下降階段運(yùn)動(dòng)的越來(lái)越快,我們可以把整個(gè)運(yùn)動(dòng)時(shí)間段分成許多小段,用運(yùn)動(dòng)員在每段時(shí)間內(nèi)的平均速度v ?近似的描述它的運(yùn)動(dòng)狀態(tài)。

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開(kāi)可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見(jiàn),任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來(lái)探討這一方面的問(wèn)題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過(guò)恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無(wú)解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過(guò)C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量及其分布列(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量及其分布列(1)教學(xué)設(shè)計(jì)

    4.寫(xiě)出下列隨機(jī)變量可能取的值,并說(shuō)明隨機(jī)變量所取的值表示的隨機(jī)試驗(yàn)的結(jié)果.(1)一個(gè)袋中裝有8個(gè)紅球,3個(gè)白球,從中任取5個(gè)球,其中所含白球的個(gè)數(shù)為X.(2)一個(gè)袋中有5個(gè)同樣大小的黑球,編號(hào)為1,2,3,4,5,從中任取3個(gè)球,取出的球的最大號(hào)碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個(gè)紅球贏2元,而每取出一個(gè)白球輸1元,以ξ表示贏得的錢(qián)數(shù),結(jié)果如何?[解] (1)X可取0,1,2,3.X=0表示取5個(gè)球全是紅球;X=1表示取1個(gè)白球,4個(gè)紅球;X=2表示取2個(gè)白球,3個(gè)紅球;X=3表示取3個(gè)白球,2個(gè)紅球.(2)X可取3,4,5.X=3表示取出的球編號(hào)為1,2,3;X=4表示取出的球編號(hào)為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號(hào)為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個(gè)球全是紅球;ξ=7表示取1個(gè)白球,4個(gè)紅球;ξ=4表示取2個(gè)白球,3個(gè)紅球;ξ=1表示取3個(gè)白球,2個(gè)紅球.

上一頁(yè)123...293294295296297298299300301302303304下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!