解 由題意可得,今年的年產(chǎn)值為a·(1+10%) 億元,于是明年的年產(chǎn)值為a·(1+10%)·(1+10%)= 1.21a(億元).若去年的年產(chǎn)值為2億元,則明年的年產(chǎn)值為1.21a =1.21×2 = 2.42(億元).答:該企業(yè)明年的年產(chǎn)值將能達到1.21a億元.由去年的年產(chǎn)值是2億元,可以預(yù)計明年的年產(chǎn)值是2.42億元.例3 當x=-3時,多項式mx3+nx-81的值是10,當x = 3時,求該代數(shù)式的值.解 當x=-3時,多項式mx3+nx-81=-27m-3n-81, 此時-27m-3n-81=10, 所以27m+3n=-91.則當x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本題采用了一種重要的數(shù)學思想——“整體思想”.即是考慮問題時不是著眼于他的局部特征,而是把注意力和著眼點放在問題的整體結(jié)構(gòu)上,把一些彼此獨立,但實質(zhì)上又相互緊密聯(lián)系著的量作為整體來處理的思想方法.
探究點三:列一元一次方程解應(yīng)用題某單位計劃“五一”期間組織職工到東湖旅游,如果單獨租用40座的客車若干輛則剛好坐滿;如果租用50座的客車則可以少租一輛,并且有40個剩余座位.(1)該單位參加旅游的職工有多少人?(2)如同時租用這兩種客車若干輛,問有無可能使每輛車剛好坐滿?如有可能,兩種車各租多少輛?(此問可只寫結(jié)果,不寫分析過程)解析:(1)先設(shè)該單位參加旅游的職工有x人,利用人數(shù)不變,車的輛數(shù)相差1,可列出一元一次方程求解;(2)可根據(jù)租用兩種汽車時,利用假設(shè)一種車的數(shù)量,進而得出另一種車的數(shù)量求出即可.解:(1)設(shè)該單位參加旅游的職工有x人,由題意得方程x40-x+4050=1,解得x=360,答:該單位參加旅游的職工有360人;(2)有可能,因為租用4輛40座的客車、4輛50座的客車剛好可以坐360人,正好坐滿.方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.
先讓學生自己總結(jié),然后互相交流,得出結(jié)論。解一元一次方程,一般要通過去分母,去括號,移項,合并同類項,未知數(shù)的系數(shù)化為1等步驟,把一個一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時,要靈活運用這些步驟。板書:解一元一次方程一般步驟:1、 去分母-----等式性質(zhì)22、 去括號----去括號法則3、 移項----等式性質(zhì)14、 合并同類項----合并同類項法則5、 系數(shù)化為1.----等式性質(zhì)2【課堂練習】練習:解下列一元一次方程解方程: (2) ;思路點拔:(1)去分母所選的乘數(shù)應(yīng)是所有分母的最小公倍數(shù),不應(yīng)遺漏。(2)用分母的最小公倍數(shù)去乘方程的兩邊時,不要漏掉等號兩邊不含分母的項。(3)去掉分母后,分數(shù)線也同時去掉,分子上的多項式用括號括起來。回顧解以上方程的全過程,表示了一元一次方程解法的一般步驟,通過去分母—去括號—移項—合并同類項—系數(shù)化為1等步驟,就可以使一元一次方程逐步向著 =a的形式轉(zhuǎn)化。
解析:當截面與軸截面平行時,得到的截面的形狀為長方形;當截面與軸截面斜交時,得到的截面的形狀是橢圓;當截面與軸截面垂直時,得到的截面的形狀是圓,所以截面的形狀不可能是三角形.故選A.方法總結(jié):用平面去截圓柱時,常見的截面有圓、橢圓、長方形、類似于梯形、類似于拱形等.探究點三:截圓錐問題一豎直平面經(jīng)過圓錐的頂點截圓錐,所得到的截面形狀與下圖中相同的是()解析:經(jīng)過圓錐頂點的平面與圓錐的側(cè)面和底面截得的都是一條線.如圖,由圖可知得到的截面是一個等腰三角形.故選B.方法總結(jié):用平面去截圓錐,截面的形狀可能是三角形、圓、橢圓等.三、板書設(shè)計教學過程中,強調(diào)學生自主探索和合作交流,經(jīng)歷操作、抽象、歸納、積累等思維過程,從中獲得數(shù)學知識與技能,發(fā)展空間觀念和動手操作能力,同時升華學生的情感態(tài)度和價值觀.
[例3]、用一個平面去截一個幾何體,截面形狀有圓、三角形,那么這個幾何體可能是_________。四、鞏固強化:1、一個正方體的截面不可能是( )A、三角形 B、梯形 C、五邊形 D、七邊形2、用一個平面去截五棱柱,邊數(shù)最多的截面是_______形.3*、用一個平面去截幾何體,若截面是三角形,這個幾何體可能是__________________________________________________.4*、用一個平面截一個幾何體,如果截面是圓,你能想象出原來的幾何體可能是什么嗎?如虹截面是三角形呢?5*、如果用一個平面截一個正方體的一個角,剩下的幾何體有幾個頂點、幾條棱、幾個面?6*、幾何體中的圓臺、棱錐都是課外介紹的,所以我們就在這個欄目里繼續(xù)為大家介紹這兩種幾何體的截面.(1)圓臺用平面截圓臺,截面形狀會有_____和_______這兩種較特殊圖形,截法如下:
小明說:“我姐姐今年的年齡是我去年的年齡的2倍少6,”已知姐姐今年20歲,問小明今年幾歲?若取小明今年為x歲,則依據(jù)下面的等量關(guān)系式列方程:姐姐今年的年齡=小明去年年齡的2倍-6.得2(x-1)-6=20.例5解方程-3(x+1)=9總結(jié):根據(jù)乘法分配律和去括號法則(括號前面是“+”號,把“+”號和括號去掉,括號內(nèi)各項都不改變符號;括號前面是“-”號,把“-”號和括號去掉,括號內(nèi)各項都改變符號)去括號時要注意:1、 不要漏乘括號內(nèi)的任何一項;2、若括號前面是“-”號,記住去括號后括號內(nèi)各項都變號.習題訓練:解方程,如課本P122練一練1,P113練一練2等.思維拓展,解簡單的應(yīng)用題,如課本P123練一練3或補充一些題,如含小括號、中括號、大括號的方程(這方面課本安排幾乎沒有,只限淺顯問題,教師不必深究)
解:設(shè)每張300元的門票買了x張,則每張400元的門票買了(8-x)張,由題意得300x+400×(8-x)=2700,解得x=5,∴買400元每張的門票張數(shù)為8-5=3(張).答:每張300元的門票買了5張,每張400元的門票買了3張.方法總結(jié):解題的關(guān)鍵是熟練掌握列方程解應(yīng)用題的一般步驟:①根據(jù)題意找出等量關(guān)系;②列出方程;③解方程;④作答.三、板書設(shè)計本節(jié)課的教學先讓學生回顧上一節(jié)所學的知識,復(fù)習鞏固方程的解法,讓學生進一步明白解方程的步驟是逐漸發(fā)展的,后面的步驟是在前面步驟的基礎(chǔ)上發(fā)展而成的.然后通過一個實際問題,列出一個有括號的方程,大膽放手讓學生去探索、猜想各種解法,去嘗試各種解題的途徑,啟發(fā)學生在化歸思想影響下想到要去括號.
四、做一做(實踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學做得比較標準。2、使出事先準備好的等邊三角形紙片,試將它折成一個正四面體。五、試一試(探索)課前,發(fā)給學生閱讀材料《晶體--自然界的多面體》,讓學生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵學生探索的欲望。教師出示實物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說出它的頂點數(shù)、棱數(shù)和面數(shù)。2、再讓學生觀察、討論其它正多面體的頂點數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書上的P128的表格。引導(dǎo)學生發(fā)現(xiàn)結(jié)論。3、(延伸):若隨意做一個多面體,看看是否還是那個結(jié)果。
(1)依照此規(guī)律,第20個圖形共有幾個五角星?(2)擺成第n個圖形需要幾個五角星?(3)擺成第2015個圖形需要幾個五角星?解析:通過觀察已知圖形可得:每個圖形都比其前一個圖形多3個五角星,根據(jù)此規(guī)律即可解答.解:(1)根據(jù)題意得,第1個圖中,五角星有3個(3×1);第2個圖中,五角星有6個(3×2);第3個圖中,五角星有9個(3×3);第4個圖中,五角星有12個(3×4);∴第n個圖中有五角星3n個.∴第20個圖中五角星有3×20=60個.(2)擺成第n個圖形需要五角星3n個.(3)擺成第2015個圖形需要6045個五角星.方法總結(jié):此題首先要結(jié)合圖形具體數(shù)出幾個值,注意由特殊到一般的分析方法.此題的規(guī)律為擺成第n個圖形需要3n個五角星.三、板書設(shè)計教學過程中,強調(diào)學生自主探索和合作交流,經(jīng)歷觀察、操作、驗證、歸納、分析、猜想、抽象、積累、類比、轉(zhuǎn)化等思維過程,從中獲得數(shù)學知識與技能,體驗教學活動的方法,同時升華學生的情感態(tài)度和價值觀.
(1)該校被抽查的學生共有多少名?(2)現(xiàn)規(guī)定視力5.1及以上為合格,若被抽查年級共有600名學生,估計該年級在2015年有多少名學生視力合格.解析:由折線統(tǒng)計圖可知2015年被抽取的學生人數(shù),且扇形統(tǒng)計圖中對應(yīng)的A區(qū)所占的百分比已知,由此即可求出被抽查的學生人數(shù);根據(jù)扇形統(tǒng)計圖中C、D區(qū)所占的百分比,即可求出該年級在2015年有多少名學生視力合格.解:(1)該校被抽查的學生人數(shù)為80÷40%=200(人);(2)估計該年級在2015年視力合格的學生人數(shù)為600×(10%+20%)=180(人).方法總結(jié):本題的解題技巧在于從兩個統(tǒng)計圖中獲取正確的信息,并互相補充互相利用.例如求被抽查的學生人數(shù)時,由折線統(tǒng)計圖可知2015年被抽取的學生人數(shù)是80人,與其相對應(yīng)的是扇形統(tǒng)計圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學生人數(shù)為80÷40%=200(人).
解析:可以根據(jù)線段的定義寫出所有的線段即可得解;也可以先找出端點的個數(shù),然后利用公式n(n-1)2進行計算.方法一:圖中線段有:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE;共4+3+2+1=10條;方法二:共有A、B、C、D、E五個端點,則線段的條數(shù)為5×(5-1)2=10條.故選C.方法總結(jié):找線段時要按照一定的順序做到不重不漏,若利用公式計算時則更加簡便準確.【類型四】 線段、射線和直線的應(yīng)用由鄭州到北京的某一次往返列車,運行途中停靠的車站依次是:鄭州——開封——商丘——菏澤——聊城——任丘——北京,那么要為這次列車制作的火車票有()A.6種 B.12種C.21種 D.42種解析:從鄭州出發(fā)要經(jīng)過6個車站,所以要制作6種車票;從開封出發(fā)要經(jīng)過5個車站,所以要制作5種車票;從商丘出發(fā)要經(jīng)過4個車站,所以要制作4種車票;從菏澤出發(fā)要經(jīng)過3個車站,所以要制作3種車票;從聊城出發(fā)要經(jīng)過2個車站,所以要制作2種車票;從任丘出發(fā)要經(jīng)過1個車站,所以要制作1種車票.再考慮是往返列車,起點與終點不同,則車票不同,乘以2即可.即共需制作的車票數(shù)為:2×(6+5+4+3+2+1)=2×21=42種.故選D.
分析:(1)(2)用乘法的交換、結(jié)合律;(3)(4)用分配律,4.99寫成5-0.01學生板書完成,并說明根據(jù)什么?略例3、某校體育器材室共有60個籃球。一天課外活動,有3個班級分別計劃借籃球總數(shù)的 , 和 。請你算一算,這60個籃球夠借嗎?如果夠了,還多幾個籃球?如果不夠,還缺幾個?解:=60-30-20-15 =-5答:不夠借,還缺5個籃球。練習鞏固:第41頁1、2、7、探究活動 (1)如果2個數(shù)的積為負數(shù),那么這2個數(shù)中有幾個負數(shù)?如果3個數(shù)的積為負數(shù),那么這3個數(shù)中有幾個負數(shù)?4個數(shù)呢?5個數(shù)呢?6個數(shù)呢?有什么規(guī)律? (2)逆用分配律 第42頁 5、用簡便方法計算(三)課堂小結(jié)通過本節(jié)課的學習,大家學會了什么?本節(jié)課我們探討了有理數(shù)乘法的運算律及其應(yīng)用.乘法的運算律有:乘法交換律:a×b=b×a;乘法結(jié)合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理數(shù)的運算中,靈活運用運算律可以簡化運算.(四)作業(yè):課本42頁作業(yè)題
方法總結(jié):讓利10%,即利潤為原來的90%.探究點三:求原價某商場節(jié)日酬賓:全場8折.一種電器在這次酬賓活動中的利潤率為10%,它的進價為2000元,那么它的原價為多少元?解析:本題中的利潤為(2000×10%)元,銷售價為(原價×80%)元,根據(jù)公式建立起方程即可.解:設(shè)原價為x元,根據(jù)題意,得80%x-2000=2000×10%.解得x=2750.答:它的原價為2750元.方法總結(jié):典例關(guān)系:售價=進價+利潤,售價=原價×打折數(shù)×0.1,售價=進價×(1+利潤率).三、板書設(shè)計本節(jié)課從和我們的生活息息相關(guān)的利潤問題入手,讓學生在具體情境中感受到數(shù)學在生活實際中的應(yīng)用,從而激發(fā)他們學習數(shù)學的興趣.根據(jù)“實際售價=進價+利潤”等數(shù)量關(guān)系列一元一次方程解決與打折銷售有關(guān)的實際問題.審清題意,找出等量關(guān)系是解決問題的關(guān)鍵.另外,商品經(jīng)濟問題的題型很多,讓學生觸類旁通,達到舉一反三,靈活的運用有關(guān)的公式解決實際問題,提高學生的數(shù)學能力.
用四舍五入法將下列各數(shù)按括號中的要求取近似數(shù).(1)0.6328(精確到0.01);(2)7.9122(精確到個位);(3)47155(精確到百位);(4)130.06(精確到0.1);(5)4602.15(精確到千位).解析:(1)把千分位上的數(shù)字2四舍五入即可;(2)把十分位上的數(shù)字9四舍五入即可;(3)先用科學記數(shù)法表示,然后把十位上的數(shù)字5四舍五入即可;(4)把百分位上的數(shù)字6四舍五入即可;(5)先用科學記數(shù)法表示,然后把百位上的數(shù)字6四舍五入即可.解:(1)0.6328≈0.63(精確到0.01);(2)7.9122≈8(精確到個位);(3)47155≈4.72×104(精確到百位);(4)130.06≈130.1(精確到0.1);(5)4602.15≈5×103(精確到千位).方法總結(jié):按精確度找出要保留的最后一個數(shù)位,再按下一個數(shù)位上的數(shù)四舍五入即可.三、板書設(shè)計教學過程中,強調(diào)學生自主探索和合作交流,經(jīng)歷觀察、操作、歸納、積累等思維過程,從中獲得數(shù)學知識與技能,體驗教學活動的方法,發(fā)展推理能力,同時升華學生的情感態(tài)度和價值觀.
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法總結(jié):如果按照先算乘法,再算加減,則運算較繁瑣,且符號容易出錯,但如果逆用乘法對加法的分配律,則可使運算簡便.探究點三:有理數(shù)乘法的運算律的實際應(yīng)用甲、乙兩地相距480千米,一輛汽車從甲地開往乙地,已經(jīng)行駛了全程的13,再行駛多少千米就可以到達中點?解析:把兩地間的距離看作單位“1”,中點即全程12處,根據(jù)題意用乘法分別求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到達中點.方法總結(jié):解答本題的關(guān)鍵是根據(jù)題意列出算式,然后根據(jù)乘法的分配律進行簡便計算.新課程理念要求把學生“學”數(shù)學放在教師“教”之前,“導(dǎo)學”是教學的重點.因此,在本節(jié)課的教學中,不要直接將結(jié)論告訴學生,而是引導(dǎo)學生從大量的實例中尋找解決問題的規(guī)律.學生經(jīng)歷積極探索知識的形成過程,最后總結(jié)得出有理數(shù)乘法的運算律.整個教學過程要讓學生積極參與,獨立思考和合作探究相結(jié)合,教師適當點評,以達到預(yù)期的教學效果.
二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學生回答,師生共同總結(jié):負數(shù)和分數(shù)的乘方書寫時,一定要把整個負數(shù)和分數(shù)用小括號括起來)三.計算:①(-2) ,②-2 ,③(- ) ,④ (叫4個學生上臺板演,其他練習本上完成,教師巡視,確保人人學得緊張高效).(四)討論更正,合作探究1.學生自由更正,或?qū)懗霾煌夥ǎ?.評講思考:將三題①③中將底數(shù)換成為正數(shù)或0,結(jié)果有什么規(guī)律?學生總結(jié):負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù),正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都為0。有理數(shù)的乘方就是幾個相同因數(shù)積的運算,可以運用有理數(shù)乘方法則進行符號的確定和冪的求值.乘方的含義:①表示一種運算;②表示運算的結(jié)果.
解:由題意得a+b=0,cd=1,|m|=6,m=±6;∴(1)當m=6時,原式=06-1+6=5;(2)當m=-6時,原式=0-6-1+6=5.故a+bm-cd+|m|的值為5.方法總結(jié):解答此題的關(guān)鍵是先根據(jù)題意得出a+b=0,cd=1及m=±6,再代入所求代數(shù)式進行計算.探究點三:有理數(shù)乘法的應(yīng)用性問題小紅家春天粉刷房間,雇用了5個工人,干了3天完成;用了某種涂料150升,費用為4800元,粉刷的面積是150m2.最后結(jié)算工錢時,有以下幾種方案:方案一:按工算,每個工100元;(1個工人干1天是一個工);方案二:按涂料費用算,涂料費用的30%作為工錢;方案三:按粉刷面積算,每平方米付工錢12元.請你幫小紅家出主意,選擇哪種方案付錢最合算(最省)?解析:根據(jù)有理數(shù)的乘法的意義列式計算.解:第一種方案的工錢為100×3×5=1500(元);第二種方案的工錢為4800×30%=1440(元);第三種方案的工錢為150×12=1800(元).答:選擇方案二付錢最合算(最省).方法總結(jié):解此題的關(guān)鍵是根據(jù)題意列出算式,計算出結(jié)果,比較得出最省的付錢方案.
討論歸納,總結(jié)出多個有理數(shù)相乘的規(guī)律:幾個不等于0的因數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定。當負因數(shù)有奇數(shù)個時,積的符號為負;當負因數(shù)有偶數(shù)個時,積的符號為正。只要有一個因數(shù)為0,積就為0。(2)幾個不等于0的因數(shù)相乘時,積的絕對值是多少?(生:積的絕對值是這幾個因數(shù)的絕對值的乘積.)例2、計算:(1) ;(2) 分析:(1)有多個不為零的有理數(shù)相乘時,可以先確定積的符號,再把絕對值相乘;(2)若其中有一個因數(shù)為0,則積為0。解:(1) = (2) =0練習(1) ,(2) ,(3) 6、探索活動:把-6表示成兩個整數(shù)的積,有多少種可能性?把它們?nèi)繉懗鰜?。(三)課堂小結(jié)通過本節(jié)課的學習,大家學會了什么?(1)有理數(shù)的乘法法則。(2)多個不等于0的有理數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定。(3)幾個數(shù)相乘時,如果有一個因數(shù)是0,則積就為0。(4)乘積是1的兩個有理數(shù)互為倒數(shù)。(四)作業(yè):課本作業(yè)題
方法總結(jié):股票每天的漲跌都是在前一天的基礎(chǔ)上進行的,不要理解為每天都是在67元的基礎(chǔ)上漲跌.另外熟記運算法則并根據(jù)題意準確列出算式也是解題的關(guān)鍵.三、板書設(shè)計加法法則(1)同號兩數(shù)相加,取與加數(shù)相同的符號,把絕對 值相加.(2)異號兩數(shù)相加,取絕對值較大加數(shù)的符號,并 用較大的絕對值減去較小的絕對值.(3)互為相反數(shù)的兩數(shù)相加得0.(4)一個數(shù)同0相加,仍得這個數(shù).本課時利用情境教學、解決問題等方法進行教學,使學生在情境中提出問題,并尋找解決問題的途徑,因此不知不覺地進入學習氛圍,把學生從被動學習變?yōu)橹鲃酉雽W.在本節(jié)教學中,要堅持以學生為主體,教師為主導(dǎo),充分調(diào)動學生的興趣和積極性,使他們最大限度地參與到課堂的活動中.
師生共同歸納法則2、異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。生5:這兩天的庫存量合計增加了2噸。(+3)+(-1)=+2 或(+8)+(-6)=+2師:會不會出現(xiàn)和為零的情況?提示:可以聯(lián)系倉庫進出貨的具體情形。生6:如星期一倉庫進貨5噸,出貨5噸,則庫存量為零。(+5)+(-5)=0師生共同歸納法則3、互為相反數(shù)的兩個數(shù)相加得零。師:你能用加法法則來解釋法則3嗎?生7:可用異號兩數(shù)相加的法則。一般地還有:一個數(shù)同零相加,仍得這個數(shù)。小結(jié):運算關(guān)鍵:先分類運算步驟:先確定符號,再計算絕對值做一做:(口答)確定下列各題中和的符號,并說明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 計算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:請四位學生板演,讓學生批改并說明理由。