目的:課后作業(yè)設計包括了兩個層面:作業(yè)1是為了鞏固基礎知識而設計;作業(yè)2是為了擴展學生的知識面;拓廣知識,增加學生對數學問題本質的思考而設計,通過此題可讓學生進一步運用三元一次方程組解決問題.教學設計反思1.本節(jié)課的內容屬于選修學習的內容,主要突出對數學興趣濃厚、學有余力的同學進一步探究和拓展使用,在數學方法和思想方面需重點引導,通過引導,使學生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導,并且比較各種解題方法之間的優(yōu)劣,總結出解多元方程的基本方法.2.作為選修課,在內容上要讓學生理解三元一次方程組概念的同時,要讓學生理解為什么要用三元一次方程組甚至多元方程組去求解實際問題的必要性,從而掌握本堂課的基礎知識.在教學的過程中,要讓學生充分理解對復雜的實際問題方程中元越多,等量關系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點和缺點,有關這一方面的題目要讓學生充分討論、交流、合作,其理解才會深刻.
解:設甲班的人數為x人,乙班的人數為y人,根據題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數為48人,乙班的人數為45人.方法總結:設未知數時,一般是求什么,設什么,并且所列方程的個數與未知數的個數相等.解這類問題的應用題,要抓住題中反映數量關系的關鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數量關系的關鍵字的含義.三、板書設計列方程組,解決問題)一般步驟:審、設、列、解、驗、答關鍵:找等量關系通過“雞兔同籠”,把同學們帶入古代的數學問題情景,學生體會到數學中的“趣”;進一步強調數學與生活的聯(lián)系,突出顯示數學教學的實際價值,培養(yǎng)學生的人文精神;進一步豐富學生數學學習的成功體驗,激發(fā)學生對數學學習的好奇心,進一步形成積極參與數學活動、主動與他人合作交流的意識.
方法總結:(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數的取值,根據一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數,a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數學活動的經驗,提高探究、發(fā)現和創(chuàng)新的能力.
(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)
首先列表,利用未知數的取值,根據一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數,a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數學活動的經驗,提高探究、發(fā)現和創(chuàng)新的能力.
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
[例3]、用一個平面去截一個幾何體,截面形狀有圓、三角形,那么這個幾何體可能是_________。四、鞏固強化:1、一個正方體的截面不可能是( )A、三角形 B、梯形 C、五邊形 D、七邊形2、用一個平面去截五棱柱,邊數最多的截面是_______形.3*、用一個平面去截幾何體,若截面是三角形,這個幾何體可能是__________________________________________________.4*、用一個平面截一個幾何體,如果截面是圓,你能想象出原來的幾何體可能是什么嗎?如虹截面是三角形呢?5*、如果用一個平面截一個正方體的一個角,剩下的幾何體有幾個頂點、幾條棱、幾個面?6*、幾何體中的圓臺、棱錐都是課外介紹的,所以我們就在這個欄目里繼續(xù)為大家介紹這兩種幾何體的截面.(1)圓臺用平面截圓臺,截面形狀會有_____和_______這兩種較特殊圖形,截法如下:
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應用已知a,b,c分別是△ABC的三邊長,當m>0時,關于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數根,請判斷△ABC的形狀.解析:先將方程轉化為一般形式,再根據根的判別式確定a,b,c之間的關系,即可判定△ABC的形狀.解:將原方程轉化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據一元二次方程根的情況,利用判別式得到關于一元二次方程系數的等式或不等式,再結合其他條件解題.
解析:正多邊形的邊心距、半徑、邊長的一半正好構成直角三角形,根據勾股定理就可以求解.解:(1)設正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結:正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉化為解直角三角形.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第4題【類型四】 圓內接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點C為圓心,以b為半徑畫弧,再以B為圓心,以c為半徑畫弧,兩弧相交于點A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結:已知三角形三邊的長,根據全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當于確定三角形三個頂點的位置.因此可先確定三角形的一條邊(即兩個頂點),再分別以這條邊的兩個端點為圓心,以已知線段長為半徑畫弧,兩弧的交點即為另一個頂點.三、板書設計1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學習了有關三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個角等于已知角.作圖時,鼓勵學生一邊作圖,一邊用幾何語言敘述作法,培養(yǎng)學生的動手能力、語言表達能力
1.了解扇形的概念,理解n°的圓心角所對的弧長和扇形面積的計算公式并熟練掌握它們的應用;(重點)2.通過復習圓的周長、圓的面積公式,探索n°的圓心角所對的弧長l=nπR180和扇形面積S扇=nπR2360的計算公式,并應用這些公式解決一些問題.(難點)一、情境導入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長度嗎(π 取3.14)?我們容易看出這段鐵軌是圓周長的14,所以鐵軌的長度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計算它所對的弧長呢?二、合作探究探究點一:弧長公式【類型一】 求弧長如圖,某廠生產橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側面.為了獲得較佳視覺效果,字樣在罐頭盒側面所形成的弧的度數為90°,則“蘑菇罐頭”字樣的長度為()
教師活動:(1)組織學生回答相關結論,小組之間互相補充評價完善。教師進一步概括總結。(2)對學生的結論予以肯定并表揚優(yōu)秀的小組,對不理想的小組予以鼓勵。(3)多媒體投放板書二:超重現象:物體對支持物的壓力(或對懸掛物的拉力)大于物體所受到的重力的情況稱為超重現象。實質:加速度方向向上。失重現象:物體對支持物的壓力(或對懸掛物的拉力)小于物體所受到的重力的情況稱為失重現象。實質:加速度方向向下。(4)運用多媒體展示電梯中的現象,引導學生在感性認識的基礎上進一步領會基本概念。4.實例應用,結論拓展:教師活動:展示太空艙中宇航員的真實生活,引導學生應用本節(jié)所學知識予以解答。學生活動:小組討論后形成共識。教師活動:(1)引導學生分小組回答相關問題,小組間互相完善補充,教師加以規(guī)范。(2)指定學生完成導學案中“思考與討論二”的兩個問題。
這五個問題,主要從學情出發(fā),由淺入深,從感知到理論,培養(yǎng)學生的鑒賞能力。第三環(huán)節(jié):延伸探究、展示成果(多媒體顯示)走出文本,引入課外同類文學現象,讓學生能夠觸類旁通,舉一反三,把教材作為一個例子,讓學生在深入的文學鑒賞中再次獲得語言的審美。同學們初步掌握了文學語言具有暗示性的性質后,還需鞏固、提升鑒賞能力!這里我采取的方法是:引導學生認真閱讀文本,經小組合作探究后,得出本組的鑒賞成果并加以展示,這里重在培養(yǎng)學生的理解能力和分析綜合能力。問題是:1、 請結合下面三首詞的意境,選用殘紅、落紅、亂紅填空。2、 閱讀下面這些句子,理解“燕”在詞語中的暗示意義。該環(huán)節(jié)充分體現了 “ 教師為主導,學生為主體”的原則。老師的適時點撥,讓學生的鑒賞思路更加清晰。學生通過合作探究,理解能力和分析綜合能力得到了提升。
1. 感受樂曲中A B C 三個音樂主題的變化, 聽辨各段主題曲調的出現順序,提高音樂記憶能力?! ?. 聽辨每段旋律的主奏樂器,區(qū)別三種樂器的音色和演奏方法, 啟發(fā)學生想象各自代表的音樂形象?! ≌f重點 1. 聽辨三段旋律出現的順序?! ?. 感受三種樂器(笛子、小提琴、吉他)不同的音色 說難點 樂曲中三段旋律的主奏樂器依次出現的順序 教具準備 鋼琴、課件、吉他、小提琴、笛子、錄音機、卡片若干 說教法學法:本課主要運用教法是:師生互動法,情景感化法,趣味節(jié)奏法 本課主要運用的學法是:自主體驗法
一、 首先我們進行教材分析本課是陜西科學技術出版社出版的小學信息技術課本 六 年級上冊第 1 課的內容,小學四年級的下學期學生已經學習了Word,Excel的操作,本課是延續(xù)Office系列軟件的學習,使學生在原有基礎上學會 使用PowerPoint。
分析:(1)(2)用乘法的交換、結合律;(3)(4)用分配律,4.99寫成5-0.01學生板書完成,并說明根據什么?略例3、某校體育器材室共有60個籃球。一天課外活動,有3個班級分別計劃借籃球總數的 , 和 。請你算一算,這60個籃球夠借嗎?如果夠了,還多幾個籃球?如果不夠,還缺幾個?解:=60-30-20-15 =-5答:不夠借,還缺5個籃球。練習鞏固:第41頁1、2、7、探究活動 (1)如果2個數的積為負數,那么這2個數中有幾個負數?如果3個數的積為負數,那么這3個數中有幾個負數?4個數呢?5個數呢?6個數呢?有什么規(guī)律? (2)逆用分配律 第42頁 5、用簡便方法計算(三)課堂小結通過本節(jié)課的學習,大家學會了什么?本節(jié)課我們探討了有理數乘法的運算律及其應用.乘法的運算律有:乘法交換律:a×b=b×a;乘法結合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理數的運算中,靈活運用運算律可以簡化運算.(四)作業(yè):課本42頁作業(yè)題
二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學生回答,師生共同總結:負數和分數的乘方書寫時,一定要把整個負數和分數用小括號括起來)三.計算:①(-2) ,②-2 ,③(- ) ,④ (叫4個學生上臺板演,其他練習本上完成,教師巡視,確保人人學得緊張高效).(四)討論更正,合作探究1.學生自由更正,或寫出不同解法;2.評講思考:將三題①③中將底數換成為正數或0,結果有什么規(guī)律?學生總結:負數的奇次冪是負數,負數的偶次冪是正數,正數的任何次冪都是正數,0的任何正整數次冪都為0。有理數的乘方就是幾個相同因數積的運算,可以運用有理數乘方法則進行符號的確定和冪的求值.乘方的含義:①表示一種運算;②表示運算的結果.
1.掌握有理數混合運算的順序,并能熟練地進行有理數加、減、乘、除、乘方的混合運算.2.在運算過程中能合理地應用運算律簡化運算.一、情境導入在學完有理數的混合運算后,老師為了檢驗同學們的學習效果,出了下面這道題:計算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計算正確嗎?二、合作探究探究點一:有理數的混合運算計算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運算,運算時,一定要注意運算順序,尤其是本題中的乘除運算.要從左到右進行計算;(2)題有大括號、中括號,在運算時,可從里到外進行.注意要靈活掌握運算順序.
觀察 和 的圖象,它們有什么相同點和不同點?學生小組討論,弄清上述兩個圖象的異同點。交流討論反比 例函數圖象是中心對稱圖形嗎?如果是,請找出對稱中心.反比例函數圖象是軸對稱圖形嗎?如果是,請指出它的對稱軸.二、隨堂練習課本隨堂練習 [探索與交流]對于函數 , 兩支曲線分別位于哪個象限內?對于函數 ,兩支曲線又分別位于哪個象限內?怎樣區(qū)別這兩個函數的圖象。學生分四人小組全班探索。 三、課堂總結在進行函數的列表,描點作圖的活動中,就已經滲透了反比例函數圖象的特征,因此在作圖象的過程中,大家要進行積極的探索 。另外,(1)反比例函數的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數y= 的圖像,當k>0時,它的圖像位于一、三象限內,當k<0時,它的圖像位于二、四象限內;(3)反比例函數既是中心對稱圖形,又是軸對稱圖形。