提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

新人教版高中英語(yǔ)必修2Unit 3 The InternetReading and Thinking教案一

  • 高中心理健康教育說(shuō)課稿

    高中心理健康教育說(shuō)課稿

    二、說(shuō)學(xué)情學(xué)生狀況:當(dāng)代中學(xué)生在科學(xué)不斷進(jìn)步,文化不斷發(fā)展,社會(huì)不斷變革的今天,雖然能很快適應(yīng)現(xiàn)代社會(huì)生活,但他們的心理還不夠成熟,在情緒特征上表現(xiàn)為好沖動(dòng)、不穩(wěn)定、極端化等特點(diǎn)。對(duì)自己的不良情緒表現(xiàn)缺乏深刻地認(rèn)識(shí),也不善于調(diào)適自己的情緒。而且高一學(xué)生正處于人生的重要關(guān)口,已經(jīng)有較強(qiáng)的獨(dú)立意識(shí),但是自控能力和心理調(diào)節(jié)能力還比較薄弱,又處于發(fā)展的不完全成熟時(shí)期,形成了他們內(nèi)心需要與意志調(diào)控能力之間的失調(diào),從而導(dǎo)致他們?cè)谔幚砗芏鄬W(xué)習(xí)和生活中的問(wèn)題時(shí)沖動(dòng)、極端化,難以很好的調(diào)適自己的情緒。

  • 新人教版高中英語(yǔ)選修2Unit 1 Science and Scientists-Reading and thinking教學(xué)設(shè)計(jì)

    新人教版高中英語(yǔ)選修2Unit 1 Science and Scientists-Reading and thinking教學(xué)設(shè)計(jì)

    Step 5: After learning the text, discuss with your peers about the following questions:1.John Snow believed Idea 2 was right. How did he finally prove it?2. Do you think John Snow would have solved this problem without the map?3. Cholera is a 19th century disease. What disease do you think is similar to cholera today?SARS and Covid-19 because they are both deadly and fatally infectious, have an unknown cause and need serious public health care to solve them urgently.keys:1. John Snow finally proved his idea because he found an outbreak that was clearly related to cholera, collected information and was able to tie cases outside the area to the polluted water.2. No. The map helped John Snow organize his ideas. He was able to identify those households that had had many deaths and check their water-drinking habits. He identified those houses that had had no deaths and surveyed their drinking habits. The evidence clearly pointed to the polluted water being the cause.3. SARS and Covid-19 because they are both deadly and fatally infectious, have an unknown cause and need serious public health care to solve them urgently.Step 6: Consolidate what you have learned by filling in the blanks:John Snow was a well-known _1___ in London in the _2__ century. He wanted to find the _3_____ of cholera in order to help people ___4_____ it. In 1854 when a cholera __5__ London, he began to gather information. He ___6__ on a map ___7___ all the dead people had lived and he found that many people who had ___8____ (drink) the dirty water from the __9____ died. So he decided that the polluted water ___10____ cholera. He suggested that the ___11__ of all water supplies should be _12______ and new methods of dealing with ____13___ water be found. Finally, “King Cholera” was __14_____.Keys: 1. doctor 2. 19th 3.cause 4.infected with 5.hit 6.marked 7.where 8.drunk 9.pump 10.carried 11.source 12.examined 13.polluted 14.defeatedHomework: Retell the text after class and preview its language points

  • 人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(jì)(2)

    【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見(jiàn)解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因?yàn)閜是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡(jiǎn)p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實(shí)數(shù)a的取值范圍.【答案】見(jiàn)解析【解析】因?yàn)椤皒∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識(shí)及解題技巧

  • 人教A版高中數(shù)學(xué)必修一三角函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一三角函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)(2)

    本節(jié)課是在學(xué)習(xí)了三角函數(shù)圖象和性質(zhì)的前提下來(lái)學(xué)習(xí)三角函數(shù)模型的簡(jiǎn)單應(yīng)用,進(jìn)一步突出函數(shù)來(lái)源于生活應(yīng)用于生活的思想,讓學(xué)生體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問(wèn)題的數(shù)學(xué)“建?!彼枷?從而培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力.課程目標(biāo)1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會(huì)用三角函數(shù)模型解決一些簡(jiǎn)單的實(shí)際問(wèn)題.2.實(shí)際問(wèn)題抽象為三角函數(shù)模型. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯抽象:實(shí)際問(wèn)題抽象為三角函數(shù)模型問(wèn)題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實(shí)際問(wèn)題中抽取基本的數(shù)學(xué)關(guān)系來(lái)建立數(shù)學(xué)模型; 3.數(shù)學(xué)運(yùn)算:實(shí)際問(wèn)題求解; 4.數(shù)學(xué)建模:體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問(wèn)題的數(shù)學(xué)建模思想,提高學(xué)生的建模、分析問(wèn)題、數(shù)形結(jié)合、抽象概括等能力.

  • 人教A版高中數(shù)學(xué)必修一函數(shù)模型的應(yīng)用教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一函數(shù)模型的應(yīng)用教學(xué)設(shè)計(jì)(2)

    本節(jié)通過(guò)一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過(guò)程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識(shí)到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡(jiǎn)單問(wèn)題。課程目標(biāo)1.能利用已知函數(shù)模型求解實(shí)際問(wèn)題.2.能自建確定性函數(shù)模型解決實(shí)際問(wèn)題.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:建立函數(shù)模型,把實(shí)際應(yīng)用問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題;2.邏輯推理:通過(guò)數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學(xué)運(yùn)算:解答數(shù)學(xué)問(wèn)題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學(xué)結(jié)果轉(zhuǎn)譯成具體問(wèn)題的結(jié)論,做出解答;5.數(shù)學(xué)建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題.重點(diǎn):利用函數(shù)模型解決實(shí)際問(wèn)題;難點(diǎn):數(shù)模型的構(gòu)造與對(duì)數(shù)據(jù)的處理.

  • 人教A版高中數(shù)學(xué)必修一不同函數(shù)增長(zhǎng)的差異教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一不同函數(shù)增長(zhǎng)的差異教學(xué)設(shè)計(jì)(2)

    本節(jié)課在已學(xué)冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的增長(zhǎng)方式存在很大差異.事實(shí)上,這種差異正是不同類(lèi)型現(xiàn)實(shí)問(wèn)題具有不同增長(zhǎng)規(guī)律的反應(yīng).而本節(jié)課重在研究不同函數(shù)增長(zhǎng)的差異.課程目標(biāo)1.掌握常見(jiàn)增長(zhǎng)函數(shù)的定義、圖象、性質(zhì),并體會(huì)其增長(zhǎng)的快慢.2.理解直線上升、對(duì)數(shù)增長(zhǎng)、指數(shù)爆炸的含義以及三種函數(shù)模型的性質(zhì)的比較,培養(yǎng)數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算等核心素養(yǎng).數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:常見(jiàn)增長(zhǎng)函數(shù)的定義、圖象、性質(zhì);2.邏輯推理:三種函數(shù)的增長(zhǎng)速度比較;3.數(shù)學(xué)運(yùn)算:由函數(shù)圖像求函數(shù)解析式;4.數(shù)據(jù)分析:由圖象判斷指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和冪函數(shù);5.數(shù)學(xué)建模:通過(guò)由抽象到具體,由具體到一般的數(shù)形結(jié)合思想總結(jié)函數(shù)性質(zhì).重點(diǎn):比較函數(shù)值得大??;難點(diǎn):幾種增長(zhǎng)函數(shù)模型的應(yīng)用.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。

  • 人教A版高中數(shù)學(xué)必修一等式性質(zhì)與不等式性質(zhì)教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一等式性質(zhì)與不等式性質(zhì)教學(xué)設(shè)計(jì)(2)

    等式性質(zhì)與不等式性質(zhì)是高中數(shù)學(xué)的主要內(nèi)容之一,在高中數(shù)學(xué)中占有重要地位,它是刻畫(huà)現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng),有著重要的實(shí)際意義.同時(shí)等式性質(zhì)與不等式性質(zhì)也為學(xué)生以后順利學(xué)習(xí)基本不等式起到重要的鋪墊.課程目標(biāo)1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運(yùn)用其解決簡(jiǎn)單的問(wèn)題.2. 進(jìn)一步掌握作差、作商、綜合法等比較法比較實(shí)數(shù)的大?。?3. 通過(guò)教學(xué)培養(yǎng)學(xué)生合作交流的意識(shí)和大膽猜測(cè)、樂(lè)于探究的良好思維品質(zhì)。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學(xué)運(yùn)算:比較多項(xiàng)式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項(xiàng)式的取值范圍,許將單項(xiàng)式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學(xué)建模:運(yùn)用類(lèi)比的思想有等式的基本性質(zhì)猜測(cè)不等式的基本性質(zhì)。

  • 人教A版高中數(shù)學(xué)必修一對(duì)數(shù)函數(shù)的概念教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一對(duì)數(shù)函數(shù)的概念教學(xué)設(shè)計(jì)(2)

    對(duì)數(shù)函數(shù)與指數(shù)函數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)函數(shù)的基礎(chǔ)上通過(guò)實(shí)例總結(jié)歸納對(duì)數(shù)函數(shù)的概念,通過(guò)函數(shù)的形式與特征解決一些與對(duì)數(shù)函數(shù)有關(guān)的問(wèn)題.課程目標(biāo)1、通過(guò)實(shí)際問(wèn)題了解對(duì)數(shù)函數(shù)的實(shí)際背景;2、掌握對(duì)數(shù)函數(shù)的概念,并會(huì)判斷一些函數(shù)是否是對(duì)數(shù)函數(shù). 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對(duì)數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學(xué)運(yùn)算:利用對(duì)數(shù)函數(shù)的概念求參數(shù);4.數(shù)學(xué)建模:通過(guò)由抽象到具體,由具體到一般的思想總結(jié)對(duì)數(shù)函數(shù)概念.重點(diǎn):理解對(duì)數(shù)函數(shù)的概念和意義;難點(diǎn):理解對(duì)數(shù)函數(shù)的概念.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入我們已經(jīng)研究了死亡生物體內(nèi)碳14的含量y隨死亡時(shí)間x的變化而衰減的規(guī)律.反過(guò)來(lái),已知死亡生物體內(nèi)碳14的含量,如何得知死亡了多長(zhǎng)時(shí)間呢?進(jìn)一步地,死亡時(shí)間t是碳14的含量y的函數(shù)嗎?

  • 人教A版高中數(shù)學(xué)必修一函數(shù)的表示法教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一函數(shù)的表示法教學(xué)設(shè)計(jì)(2)

    課本從引進(jìn)函數(shù)概念開(kāi)始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對(duì)函數(shù)的認(rèn)識(shí),幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過(guò)函數(shù)的學(xué)習(xí)更好地體會(huì)數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時(shí),要充分發(fā)揮圖象的直觀作用.在研究圖象時(shí),又要注意代數(shù)刻畫(huà)以求思考和表述的精確性.課本將映射作為函數(shù)的一種推廣,這與傳統(tǒng)的處理方式有了邏輯順序上的變化.這樣處理,主要是想較好地銜接初中的學(xué)習(xí),讓學(xué)生將更多的精力集中理解函數(shù)的概念,同時(shí),也體現(xiàn)了從特殊到一般的思維過(guò)程.課程目標(biāo)1、明確函數(shù)的三種表示方法;2、在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù);3、通過(guò)具體實(shí)例,了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單應(yīng)用.

  • 人教A版高中數(shù)學(xué)必修一函數(shù)的零點(diǎn)與方程的解教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一函數(shù)的零點(diǎn)與方程的解教學(xué)設(shè)計(jì)(2)

    本章通過(guò)學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會(huì)函數(shù)與方程之間的關(guān)系,通過(guò)一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過(guò)程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識(shí)到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡(jiǎn)單問(wèn)題。1.了解函數(shù)的零點(diǎn)、方程的根與圖象交點(diǎn)三者之間的聯(lián)系.2.會(huì)借助零點(diǎn)存在性定理判斷函數(shù)的零點(diǎn)所在的大致區(qū)間.3.能借助函數(shù)單調(diào)性及圖象判斷零點(diǎn)個(gè)數(shù).?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:函數(shù)零點(diǎn)的概念;2.邏輯推理:借助圖像判斷零點(diǎn)個(gè)數(shù);3.數(shù)學(xué)運(yùn)算:求函數(shù)零點(diǎn)或零點(diǎn)所在區(qū)間;4.數(shù)學(xué)建模:通過(guò)由抽象到具體,由具體到一般的思想總結(jié)函數(shù)零點(diǎn)概念.重點(diǎn):零點(diǎn)的概念,及零點(diǎn)與方程根的聯(lián)系;難點(diǎn):零點(diǎn)的概念的形成.

  • 人教A版高中數(shù)學(xué)必修一集合的基本運(yùn)算教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一集合的基本運(yùn)算教學(xué)設(shè)計(jì)(2)

    集合的基本運(yùn)算是人教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū),數(shù)學(xué)必修1第一章第三節(jié)的內(nèi)容. 在此之前,學(xué)生已學(xué)習(xí)了集合的含義以及集合與集合之間的基本關(guān)系,這為學(xué)習(xí)本節(jié)內(nèi)容打下了基礎(chǔ). 本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用. 本節(jié)內(nèi)容是高中數(shù)學(xué)的主要內(nèi)容,也是高考的對(duì)象,在實(shí)踐中應(yīng)用廣泛,是高中學(xué)生必須掌握的重點(diǎn).課程目標(biāo)1. 理解兩個(gè)集合的并集與交集的含義,能求兩個(gè)集合的并集與交集;2. 理解全集和補(bǔ)集的含義,能求給定集合的補(bǔ)集; 3. 能使用Venn圖表達(dá)集合的基本關(guān)系與基本運(yùn)算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:并集、交集、全集、補(bǔ)集含義的理解;2.邏輯推理:并集、交集及補(bǔ)集的性質(zhì)的推導(dǎo);3.數(shù)學(xué)運(yùn)算:求 兩個(gè)集合的并集、交集及補(bǔ)集,已知并集、交集及補(bǔ)集的性質(zhì)求參數(shù)(參數(shù)的范圍);4.數(shù)據(jù)分析:通過(guò)并集、交集及補(bǔ)集的性質(zhì)列不等式組,此過(guò)程中重點(diǎn)關(guān)注端點(diǎn)是否含“=”及?問(wèn)題;

  • 人教A版高中數(shù)學(xué)必修一集合間的基本關(guān)系教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一集合間的基本關(guān)系教學(xué)設(shè)計(jì)(2)

    第一節(jié)通過(guò)研究集合中元素的特點(diǎn)研究了元素與集合之間的關(guān)系及集合的表示方法,而本節(jié)重點(diǎn)通過(guò)研究元素得到兩個(gè)集合之間的關(guān)系,尤其學(xué)生學(xué)完兩個(gè)集合之間的關(guān)系后,一定讓學(xué)生明確元素與集合、集合與集合之間的區(qū)別。課程目標(biāo)1. 了解集合之間包含與相等的含義,能識(shí)別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達(dá)集合間的關(guān)系,體會(huì)直觀圖示對(duì)理解抽象概念的作用。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學(xué)運(yùn)算:由集合間的關(guān)系求參數(shù)的范圍,常見(jiàn)包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過(guò)集合關(guān)系列不等式組, 此過(guò)程中重點(diǎn)關(guān)注端點(diǎn)是否含“=”及 問(wèn)題;5.數(shù)學(xué)建模:用集合思想對(duì)實(shí)際生活中的對(duì)象進(jìn)行判斷與歸類(lèi)。

  • 人教A版高中數(shù)學(xué)必修一簡(jiǎn)單的三角恒等變換教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一簡(jiǎn)單的三角恒等變換教學(xué)設(shè)計(jì)(2)

    它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過(guò)這些公式進(jìn)行求值、化簡(jiǎn)、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運(yùn)算能力,但在數(shù)學(xué)的應(yīng)用意識(shí)與應(yīng)用能力方面尚需進(jìn)一步培養(yǎng).課程目標(biāo)1.能用二倍角公式推導(dǎo)出半角公式,體會(huì)三角恒等變換的基本思想方法,以及進(jìn)行簡(jiǎn)單的應(yīng)用. 2.了解三角恒等變換的特點(diǎn)、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進(jìn)行三角函數(shù)式的化簡(jiǎn)、求值以及證明,進(jìn)而進(jìn)行簡(jiǎn)單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡(jiǎn); 3.數(shù)學(xué)運(yùn)算:三角函數(shù)式的求值.

  • 人教A版高中數(shù)學(xué)必修一全稱(chēng)量詞與存在量詞教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一全稱(chēng)量詞與存在量詞教學(xué)設(shè)計(jì)(2)

    (4)“不論m取何實(shí)數(shù),方程x2+2x-m=0都有實(shí)數(shù)根”是全稱(chēng)量詞命題,其否定為“存在實(shí)數(shù)m0,使得方程x2+2x-m0=0沒(méi)有實(shí)數(shù)根”,它是真命題.解題技巧:(含有一個(gè)量詞的命題的否定方法)(1)一般地,寫(xiě)含有一個(gè)量詞的命題的否定,首先要明確這個(gè)命題是全稱(chēng)量詞命題還是存在量詞命題,并找到其量詞的位置及相應(yīng)結(jié)論,然后把命題中的全稱(chēng)量詞改成存在量詞,存在量詞改成全稱(chēng)量詞,同時(shí)否定結(jié)論.(2)對(duì)于省略量詞的命題,應(yīng)先挖掘命題中隱含的量詞,改寫(xiě)成含量詞的完整形式,再依據(jù)規(guī)則來(lái)寫(xiě)出命題的否定.跟蹤訓(xùn)練三3.寫(xiě)出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個(gè)實(shí)數(shù)x,使x3+1=0.【答案】見(jiàn)解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.

  • 人教A版高中數(shù)學(xué)必修一同角三角函數(shù)的基本關(guān)系教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一同角三角函數(shù)的基本關(guān)系教學(xué)設(shè)計(jì)(2)

    本節(jié)內(nèi)容是學(xué)生學(xué)習(xí)了任意角和弧度制,任意角的三角函數(shù)后,安排的一節(jié)繼續(xù)深入學(xué)習(xí)內(nèi)容,是求三角函數(shù)值、化簡(jiǎn)三角函數(shù)式、證明三角恒等式的基本工具,是整個(gè)三角函數(shù)知識(shí)的基礎(chǔ),在教材中起承上啟下的作用。同時(shí),它體現(xiàn)的數(shù)學(xué)思想與方法在整個(gè)中學(xué)數(shù)學(xué)學(xué)習(xí)中起重要作用。課程目標(biāo)1.理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用.2.會(huì)利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡(jiǎn)、求值與恒等式證明.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解同角三角函數(shù)基本關(guān)系式;2.邏輯推理: “sin α±cos α”同“sin αcos α”間的關(guān)系;3.數(shù)學(xué)運(yùn)算:利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡(jiǎn)、求值與恒等式證明重點(diǎn):理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用; 難點(diǎn):會(huì)利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡(jiǎn)、求值與恒等式證明.

  • 人教A版高中數(shù)學(xué)必修一正切函數(shù)的圖像與性質(zhì)教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一正切函數(shù)的圖像與性質(zhì)教學(xué)設(shè)計(jì)(2)

    本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過(guò)圖像研究正切函數(shù)的性質(zhì). 課程目標(biāo)1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡(jiǎn)單地應(yīng)用.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過(guò)圖像探究正切函數(shù)的性質(zhì). 重點(diǎn):能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡(jiǎn)單地應(yīng)用; 難點(diǎn):掌握利用單位圓中正切函數(shù)定義得到其圖象.

  • 人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的圖像教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的圖像教學(xué)設(shè)計(jì)(2)

    由于三角函數(shù)是刻畫(huà)周期變化現(xiàn)象的數(shù)學(xué)模型,這也是三角函數(shù)不同于其他類(lèi)型函數(shù)的最重要的地方,而且對(duì)于周期函數(shù),我們只要認(rèn)識(shí)清楚它在一個(gè)周期的區(qū)間上的性質(zhì),那么它的性質(zhì)也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來(lái)作圖,從畫(huà)出的圖形中觀察得出五個(gè)關(guān)鍵點(diǎn),得到“五點(diǎn)法”畫(huà)正弦函數(shù)、余弦函數(shù)的簡(jiǎn)圖.課程目標(biāo)1.掌握“五點(diǎn)法”畫(huà)正弦曲線和余弦曲線的步驟和方法,能用“五點(diǎn)法”作出簡(jiǎn)單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯(lián)系. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯(lián)系; 3.直觀想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學(xué)運(yùn)算:五點(diǎn)作圖; 5.數(shù)學(xué)建模:通過(guò)正弦、余弦圖象圖像,解決不等式問(wèn)題及零點(diǎn)問(wèn)題,這正是數(shù)形結(jié)合思想方法的應(yīng)用.

  • 人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(2)

    本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點(diǎn)得出正弦函數(shù)、余弦函數(shù)的性質(zhì). 課程目標(biāo)1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會(huì)利用周期性定義和誘導(dǎo)公式求簡(jiǎn)單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點(diǎn)等);5.能利用性質(zhì)解決一些簡(jiǎn)單問(wèn)題. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過(guò)圖像探究正、余弦函數(shù)的性質(zhì).重點(diǎn):通過(guò)正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質(zhì); 難點(diǎn):應(yīng)用正、余弦函數(shù)的性質(zhì)來(lái)求含有cosx,sinx的函數(shù)的單調(diào)性、最值、值域及對(duì)稱(chēng)性.

  • 人教A版高中數(shù)學(xué)必修一指數(shù)函數(shù)的概念教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一指數(shù)函數(shù)的概念教學(xué)設(shè)計(jì)(2)

    指數(shù)函數(shù)與冪函數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)冪函數(shù)的基礎(chǔ)上通過(guò)實(shí)例總結(jié)歸納指數(shù)函數(shù)的概念,通過(guò)函數(shù)的三個(gè)特征解決一些與函數(shù)概念有關(guān)的問(wèn)題.課程目標(biāo)1、通過(guò)實(shí)際問(wèn)題了解指數(shù)函數(shù)的實(shí)際背景;2、理解指數(shù)函數(shù)的概念和意義.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:指數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學(xué)運(yùn)算:利用指數(shù)函數(shù)的概念求參數(shù);4.數(shù)學(xué)建模:通過(guò)由抽象到具體,由具體到一般的思想總結(jié)指數(shù)函數(shù)概念.重點(diǎn):理解指數(shù)函數(shù)的概念和意義;難點(diǎn):理解指數(shù)函數(shù)的概念.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入在本章的開(kāi)頭,問(wèn)題(1)中時(shí)間 與GDP值中的 ,請(qǐng)問(wèn)這兩個(gè)函數(shù)有什么共同特征.要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過(guò)線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過(guò)點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿(mǎn)足條件的直線l的方程是x-y+2=0或y=2.

上一頁(yè)123...404142434445464748495051下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!