提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.1《平面的基本性質(zhì)》教學(xué)設(shè)計(jì)

  • 拋物線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒(méi)有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱軸或與對(duì)稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過(guò)拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過(guò)點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 橢圓的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    橢圓的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長(zhǎng)軸長(zhǎng)是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長(zhǎng)軸長(zhǎng)、半短軸長(zhǎng)、焦點(diǎn)坐標(biāo)及離心率;(2)寫(xiě)出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長(zhǎng)軸長(zhǎng)為10,半短軸長(zhǎng)為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長(zhǎng)軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.

  • 橢圓的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    橢圓的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過(guò)對(duì)稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過(guò)旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.

  • 北師大版初中八年級(jí)數(shù)學(xué)上冊(cè)平面直角坐標(biāo)系說(shuō)課稿2篇

    北師大版初中八年級(jí)數(shù)學(xué)上冊(cè)平面直角坐標(biāo)系說(shuō)課稿2篇

    【設(shè)計(jì)意圖】:這一環(huán)節(jié)的設(shè)計(jì)主要是為了培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,讓學(xué)生在自學(xué)中初步認(rèn)識(shí)概念。通過(guò)材料的閱讀,活動(dòng)的實(shí)踐,讓學(xué)生在自畫(huà)、自糾中,加深對(duì)概念的理解,培養(yǎng)學(xué)生良好的畫(huà)圖習(xí)慣。(三)例題講解學(xué)生活動(dòng)4:(由于例題都比較簡(jiǎn)單,所以讓學(xué)生自己先做,教師巡視指導(dǎo))例1、寫(xiě)出圖中A、B、C、D、E各點(diǎn)的坐標(biāo)。例2、在直角坐標(biāo)系中,描出下列各點(diǎn):A(4,3), B(-2,3),C(-4,-1),D(2,-2)。【設(shè)計(jì)意圖】:例1的目的是給出點(diǎn)的位置,寫(xiě)出點(diǎn)的坐標(biāo)。例2的目的是給出點(diǎn)的坐標(biāo),描出點(diǎn)。學(xué)完概念之后,馬上對(duì)概念進(jìn)行應(yīng)用,達(dá)到鞏固的目的。當(dāng)時(shí)上課時(shí)這2道例題的解答都比較圓滿,絕大部分學(xué)生都能順利做出。

  • 北師大初中數(shù)學(xué)八年級(jí)上冊(cè)正比例函數(shù)的圖象和性質(zhì)1教案

    北師大初中數(shù)學(xué)八年級(jí)上冊(cè)正比例函數(shù)的圖象和性質(zhì)1教案

    探究點(diǎn)三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過(guò)一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點(diǎn)在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關(guān)系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過(guò)一、三象限,可知-k>0即kx3>x2得y10時(shí),y隨x的增大而增大;k<0時(shí),y隨x的增大而減?。鍟?shū)設(shè)計(jì)1.函數(shù)與圖象之間是一一對(duì)應(yīng)的關(guān)系;2.作一個(gè)函數(shù)的圖象的一般步驟:列表,描點(diǎn),連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過(guò)原點(diǎn)的直線.經(jīng)歷函數(shù)圖象的作圖過(guò)程,初步了解作函數(shù)圖象的一般步驟:列表、描點(diǎn)、連線.已知函數(shù)的表達(dá)式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識(shí)和能力.理解一次函數(shù)的表達(dá)式與圖象之間的一一對(duì)應(yīng)關(guān)系.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的性質(zhì)1教案

    如圖,四邊形OABC是邊長(zhǎng)為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過(guò)點(diǎn)B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長(zhǎng)為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點(diǎn)B(x0,y0)是反比例函數(shù)y=kx圖象上的一點(diǎn),則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點(diǎn)B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號(hào).三、板書(shū)設(shè)計(jì)反比例函數(shù)的性質(zhì)性質(zhì)當(dāng)k>0時(shí),在每一象限內(nèi),y的值隨x的值的增大而減小當(dāng)k<0時(shí),在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過(guò)對(duì)反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進(jìn)行語(yǔ)言表述,訓(xùn)練學(xué)生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動(dòng)中,增強(qiáng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.

  • 北師大初中數(shù)學(xué)八年級(jí)上冊(cè)正比例函數(shù)的圖象和性質(zhì)2教案

    北師大初中數(shù)學(xué)八年級(jí)上冊(cè)正比例函數(shù)的圖象和性質(zhì)2教案

    四、教學(xué)設(shè)計(jì)反思這節(jié)內(nèi)容是學(xué)生利用數(shù)形結(jié)合的思想去研究正比例函數(shù)的圖象,對(duì)函數(shù)與圖象的對(duì)應(yīng)關(guān)系有點(diǎn)陌生.在教學(xué)過(guò)程中教師應(yīng)通過(guò)情境創(chuàng)設(shè)激發(fā)學(xué)生的學(xué)習(xí)興趣,對(duì)函數(shù)與圖象的對(duì)應(yīng)關(guān)系應(yīng)讓學(xué)生動(dòng)手去實(shí)踐,去發(fā)現(xiàn),對(duì)正比例函數(shù)的圖象是一條直線應(yīng)讓學(xué)生自己得出.在得出結(jié)論之后,讓學(xué)生能運(yùn)用“兩點(diǎn)確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習(xí)活動(dòng)中,鼓勵(lì)學(xué)生積極思考,提高學(xué)生解決實(shí)際問(wèn)題的能力.當(dāng)然,根據(jù)學(xué)生狀況,教學(xué)設(shè)計(jì)也應(yīng)做出相應(yīng)的調(diào)整。如第一環(huán)節(jié):創(chuàng)設(shè)情境 引入課題,固然可以激發(fā)學(xué)生興趣,但也可能容易讓學(xué)生關(guān)注代數(shù)表達(dá)式的尋求,甚至對(duì)部分學(xué)生形成一定的認(rèn)知障礙,因此該環(huán)節(jié)也可以直接開(kāi)門見(jiàn)山,直入主題,如提出問(wèn)題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個(gè)正比例函數(shù)對(duì)應(yīng)的圖形具有什么特征呢?

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線分成4個(gè)等腰直角三角形,因此在正方形中解決問(wèn)題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過(guò)正方形ABCD的對(duì)角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說(shuō)明AP=CP,由正方形對(duì)角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線互相垂直平分證明線段相等;(2)無(wú)論是正方形還是矩形,經(jīng)常連接對(duì)角線,這樣可以使分散的條件集中.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)2教案

    1)正方形的邊長(zhǎng)為4cm,則周長(zhǎng)為( ),面積為( ) ,對(duì)角線長(zhǎng)為( );2))正方形ABCD中,對(duì)角線AC、BD交于O點(diǎn),AC=4 cm,則正方形的邊長(zhǎng)為( ), 周長(zhǎng)為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對(duì)角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個(gè)角相等 B、對(duì)角線互相垂直平分 C、對(duì)角互補(bǔ) D、對(duì)角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對(duì)角線互相垂直平分 C對(duì)角線平分一組對(duì)角 D對(duì)角線相等. 6)、正方形對(duì)角線長(zhǎng)6,則它的面積為_(kāi)________ ,周長(zhǎng)為_(kāi)_______. 7)、順次連接正方形各邊中點(diǎn)的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過(guò)程的書(shū)寫(xiě)2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫(huà)正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE

  • 北師大初中數(shù)學(xué)八年級(jí)上冊(cè)建立平面直角坐標(biāo)系確定點(diǎn)的坐標(biāo)2教案

    北師大初中數(shù)學(xué)八年級(jí)上冊(cè)建立平面直角坐標(biāo)系確定點(diǎn)的坐標(biāo)2教案

    活動(dòng)目的:(1)通過(guò)小組討論活動(dòng),讓學(xué)生理解坐標(biāo)系的特點(diǎn),并能應(yīng)用特點(diǎn)解決問(wèn)題。(2)培養(yǎng)學(xué)生逆向思維的習(xí)慣。(3)在小組討論中培養(yǎng)學(xué)生勇于探索,團(tuán)結(jié)協(xié)作的精神。第四環(huán)節(jié):練習(xí)隨堂練習(xí) (體現(xiàn)建立直角坐標(biāo)系的多樣性)(補(bǔ)充)某地為了發(fā)展城市群,在現(xiàn)有的四個(gè)中小城市A,B,C,D附近新建機(jī)場(chǎng)E,試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫(xiě)出各點(diǎn)的坐標(biāo)。第五環(huán)節(jié):小結(jié)內(nèi)容:小結(jié)本節(jié)課自己的收獲和進(jìn)步,從知識(shí)和能力上兩個(gè)方面總結(jié),老師予于肯定和鼓勵(lì)。目的:鼓勵(lì)學(xué)生大膽發(fā)言,敢于表達(dá)自己的觀點(diǎn),同時(shí)學(xué)生之間可以相互學(xué)習(xí),共同提高,老師給予肯定和鼓勵(lì),激發(fā)學(xué)生的學(xué)習(xí)熱情。第六環(huán)節(jié):布置作業(yè)A類:課本習(xí)題5.5。B類:完成A類同時(shí),補(bǔ)充:(1)已知點(diǎn)A到x軸、y軸的距離均為4,求A點(diǎn)坐標(biāo);(2)已知x軸上一點(diǎn)A(3,0),B(3,b),且AB=5,求b的值。

  • 第四單元《教學(xué)設(shè)計(jì)》 說(shuō)課稿  2021—2022學(xué)年統(tǒng)編版高中語(yǔ)文必修下冊(cè)

    第四單元《教學(xué)設(shè)計(jì)》 說(shuō)課稿 2021—2022學(xué)年統(tǒng)編版高中語(yǔ)文必修下冊(cè)

    (六)說(shuō)教學(xué)策略1.專題性海量的媒介信息必須加以選擇或者整合,以項(xiàng)目為依據(jù),進(jìn)行信息篩選,形成專題性閱讀與交流;培養(yǎng)學(xué)生對(duì)文本信息“化零為整”的能力,提升跨媒介閱讀與交流學(xué)習(xí)的充實(shí)感。2.情境化情境教學(xué)應(yīng)指向?qū)W生的應(yīng)用,建構(gòu)富有符合時(shí)代氣息的內(nèi)容,與生活經(jīng)驗(yàn)更加貼合,對(duì)學(xué)生的語(yǔ)言建構(gòu)與運(yùn)用有所提升,在情境中能夠有效地進(jìn)行交流。3.任務(wù)化以任務(wù)為導(dǎo)向的序列化學(xué)習(xí),可以為學(xué)生構(gòu)建學(xué)習(xí)路線圖、學(xué)習(xí)框架等具體任務(wù)引導(dǎo);或以跨媒介的認(rèn)識(shí)與應(yīng)用為任務(wù)的設(shè)置引導(dǎo);甚至以閱讀和交流作為序列化安排的實(shí)踐引導(dǎo)。4.整合性跨媒介閱讀與交流是結(jié)合線上線下的資源,形成新的“超媒介”,也能實(shí)現(xiàn)對(duì)信息進(jìn)行“深加工”,多種媒介的信息整合只為一個(gè)核心教學(xué)內(nèi)容服務(wù)。5.互文性語(yǔ)言文字是語(yǔ)文之生命,我們是立足于語(yǔ)言文字的探討,音樂(lè)、圖像、視頻等文本與傳統(tǒng)語(yǔ)言文字文本形成互文,觸發(fā)學(xué)生對(duì)學(xué)習(xí)內(nèi)容立體化和具體化的感悟,提升學(xué)生的審美能力。

  • 初中數(shù)學(xué)北京課改版八年級(jí)上冊(cè)《122三角形的性質(zhì)》說(shuō)課稿

    初中數(shù)學(xué)北京課改版八年級(jí)上冊(cè)《122三角形的性質(zhì)》說(shuō)課稿

    一.學(xué)生情況分析對(duì)于三角形的內(nèi)角和定理,學(xué)生在小學(xué)階段已通過(guò)量、折、拼的方法進(jìn)行了合情推理并得出了相關(guān)的推論。在小學(xué)認(rèn)識(shí)三角形,通過(guò)觀察、操作,得到了三角形內(nèi)角和是180°。但在學(xué)生升入初中階段學(xué)習(xí)過(guò)推理證明后,必須明確推理要有依據(jù),定理必須通過(guò)邏輯證明?,F(xiàn)在的學(xué)生喜歡動(dòng)手實(shí)驗(yàn),操作能力較強(qiáng),但對(duì)知識(shí)的歸納、概括能力以及知識(shí)的遷移能力不強(qiáng)。部分優(yōu)秀學(xué)生已具備良好的學(xué)習(xí)習(xí)慣,有一定分析、歸納能力。

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)1教案

    ①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫(huà)法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長(zhǎng);②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長(zhǎng)線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫(huà)位似圖形時(shí),要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫(huà)位似圖形的關(guān)鍵是畫(huà)出圖形中頂點(diǎn)的對(duì)應(yīng)點(diǎn).畫(huà)圖的方法大致有兩種:一是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒(méi)有指定位似中心的位置,則畫(huà)圖時(shí)位似中心的取法有多種,對(duì)畫(huà)圖而言,以多邊形的一個(gè)頂點(diǎn)為位似中心時(shí),畫(huà)圖最簡(jiǎn)便.三、板書(shū)設(shè)計(jì)

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)2教案

    (3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫(huà)的四邊形A′B′C′D′,如圖2.問(wèn):此題目還可以 如何畫(huà)出圖形?作法二 :(1)在四邊形ABCD外任取一點(diǎn) O;(2)過(guò)點(diǎn)O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長(zhǎng)線上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫(huà)的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點(diǎn)O;(2)過(guò)點(diǎn)O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫(huà)的四邊形A′B′C′D′,如圖4.(當(dāng)點(diǎn)O在四邊形ABCD的一條邊上或在四邊形ABCD的一個(gè)頂點(diǎn)上時(shí),作法略——可以讓學(xué)生自己完成)三、課堂練習(xí) 活動(dòng)3 教材習(xí)題小結(jié):談?wù)勀氵@節(jié)課學(xué)習(xí)的收獲.

  • 小學(xué)美術(shù)人教版六年級(jí)下冊(cè)《第12課二十年后的學(xué)?!方虒W(xué)設(shè)計(jì)

    小學(xué)美術(shù)人教版六年級(jí)下冊(cè)《第12課二十年后的學(xué)?!方虒W(xué)設(shè)計(jì)

    2重點(diǎn)難點(diǎn)教學(xué)重點(diǎn)用各種方法、材料制作未來(lái)的學(xué)校模型。第一課時(shí):設(shè)計(jì)制作學(xué)校的平面圖第二課時(shí):設(shè)計(jì)制作學(xué)校的立體模型。教學(xué)難點(diǎn)大膽想象,小組協(xié)作,創(chuàng)想出與眾不同的學(xué)校創(chuàng)意。第一課時(shí):學(xué)校建筑的布局。第二課時(shí):設(shè)計(jì)與眾不同的未來(lái)的建筑。3教學(xué)過(guò)程3.1 第一學(xué)時(shí)

  • 小學(xué)數(shù)學(xué)人教版五年級(jí)上冊(cè)《等式的性質(zhì)》說(shuō)課稿

    小學(xué)數(shù)學(xué)人教版五年級(jí)上冊(cè)《等式的性質(zhì)》說(shuō)課稿

    說(shuō)教材>是人教版小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)第五單元P64的內(nèi)容。在學(xué)習(xí)本節(jié)課之前學(xué)生已經(jīng)認(rèn)識(shí)了等式與方程,這便為本節(jié)課的學(xué)習(xí)(構(gòu)建等量關(guān)系的數(shù)學(xué)模型)打下一定的基礎(chǔ),同時(shí)也為以后解簡(jiǎn)單方程埋下伏筆,因此本節(jié)課內(nèi)容也是本章中的一個(gè)重點(diǎn)?;诒竟?jié)內(nèi)容的特點(diǎn),我將本節(jié)課的教學(xué)目標(biāo)確定為:1.知識(shí)與技能:理解等式的性質(zhì)并用語(yǔ)言表述,能利用等式的性質(zhì)解決簡(jiǎn)單問(wèn)題;2.過(guò)程與方法:在實(shí)驗(yàn)操作、討論、歸納等活動(dòng)中,經(jīng)歷探究等式基本性質(zhì)的過(guò)程;3.情感態(tài)度與價(jià)值觀:使學(xué)生積極參與數(shù)學(xué)活動(dòng),體驗(yàn)探索等式基本性質(zhì)的挑戰(zhàn)性與得出數(shù)學(xué)結(jié)論的確定性。教學(xué)重難點(diǎn):了解等式的基本性質(zhì),并能簡(jiǎn)單運(yùn)用。說(shuō)學(xué)情:小學(xué)五年級(jí)的學(xué)生已具備一定的思考能力,又樂(lè)于動(dòng)手操作、合作探究。因此教學(xué)中我引導(dǎo)學(xué)生認(rèn)真觀察-獨(dú)立思考-自主探究-合作交流,遵循由淺入深,由具體到抽象的規(guī)律,為學(xué)生創(chuàng)設(shè)一個(gè)和諧的學(xué)習(xí)環(huán)境,讓孩子們?cè)谔剿髦薪涣?、感受、理解和概括出等式的基本性質(zhì)。

  • 人教版高中政治必修4哲學(xué)的基本問(wèn)題精品教案

    人教版高中政治必修4哲學(xué)的基本問(wèn)題精品教案

    一、教材分析本框題包括什么是哲學(xué)的基本問(wèn)題、為什么思維和存在的關(guān)系問(wèn)題是哲學(xué)的基本問(wèn)題兩個(gè)目題。第一個(gè)問(wèn)題:什么是哲學(xué)的基本問(wèn)題。其邏輯順序是:什么是哲學(xué)的基本問(wèn)題→哲學(xué)的基本問(wèn)題所包含的兩方面的內(nèi)容→對(duì)哲學(xué)的基本問(wèn)題第一方面內(nèi)容的不同回答是劃分唯物主義和唯心主義的標(biāo)準(zhǔn)→對(duì)哲學(xué)的基本問(wèn)題第二方面內(nèi)容的不同回答是劃分可知論和不可知論的標(biāo)準(zhǔn)。第二個(gè)問(wèn)題:為什么思維和存在的關(guān)系問(wèn)題是哲學(xué)的基本問(wèn)題。其 邏輯順序是:思維和存在的關(guān)系問(wèn)題是人們?cè)诂F(xiàn)實(shí)生活和實(shí)踐活動(dòng)中遇到的和無(wú)法回避的基本問(wèn)題→思維和存在的關(guān)系問(wèn)題,是一切哲學(xué)都不能回避的、必須回答的問(wèn)題→思維和存在的關(guān)系問(wèn)題,貫穿于哲學(xué)發(fā)展的始終,對(duì)這個(gè)問(wèn)題的不同回答決定著各種哲學(xué)的基本性質(zhì)和方向,決定著對(duì)其它哲學(xué)問(wèn)題的回答。 二、教學(xué)目標(biāo)(一)知識(shí)目標(biāo)(1)識(shí)記哲學(xué)的基本問(wèn)題(2)解釋哲學(xué)的基本問(wèn)題

  • 人教版高中政治必修4哲學(xué)的基本問(wèn)題說(shuō)課稿(一)

    人教版高中政治必修4哲學(xué)的基本問(wèn)題說(shuō)課稿(一)

    五.說(shuō)教學(xué)過(guò)程:(重點(diǎn))1.課題引入:課堂探究導(dǎo)入新課。采用教材現(xiàn)成的探究活動(dòng)導(dǎo)入新課,既“溫故”又“知新”,還節(jié)約了課堂有效時(shí)間。2.講授新課:(20-25分鐘)本課的重難點(diǎn)是關(guān)于哲學(xué)基本問(wèn)題的解釋,我引用一個(gè)很著名的學(xué)生也略知一二的唯心主義觀點(diǎn)的例子(課堂探究1)順利進(jìn)入本課重要知識(shí)點(diǎn)的學(xué)習(xí),采用案例教學(xué),激發(fā)學(xué)生的興趣以及探究問(wèn)題的欲望,學(xué)習(xí)哲學(xué)基本問(wèn)題的第一個(gè)方面,并用問(wèn)題和練習(xí)形式鞏固知識(shí),強(qiáng)化學(xué)生易錯(cuò)已混知識(shí)點(diǎn);課堂探究2,同樣引用哲學(xué)上的著名案例讓學(xué)生分析探究思考以及合作交流,學(xué)生趣味濃厚,主動(dòng)深入學(xué)習(xí)本課知識(shí),達(dá)到預(yù)期教學(xué)目的。此時(shí),本課的重點(diǎn)知識(shí)教學(xué)完成。關(guān)于本課的第二個(gè)知識(shí)點(diǎn)“為什么思維和存在的關(guān)系問(wèn)題是哲學(xué)的基本問(wèn)題”采用學(xué)生自主閱讀、合作交流的方法,歸納總結(jié),完成本知識(shí)目標(biāo)。3.課堂反饋、知識(shí)遷移(10-15分鐘)采用學(xué)生總結(jié)、隨堂練習(xí)等形式鞏固本課知識(shí),同時(shí)檢驗(yàn)教學(xué)效果。可使學(xué)生更深刻的理解教學(xué)重點(diǎn)。

  • 人教版高中政治必修4哲學(xué)的基本問(wèn)題說(shuō)課稿(二)

    人教版高中政治必修4哲學(xué)的基本問(wèn)題說(shuō)課稿(二)

    ②關(guān)于哲學(xué)的第二個(gè)問(wèn)題是——思維和存在有沒(méi)有同一性解釋同一性——就是說(shuō)意識(shí)(思維)能否正確認(rèn)識(shí)物質(zhì)(存在)的問(wèn)題。(讓學(xué)生表達(dá)他們自己的意見(jiàn))總結(jié)得出三種看法——認(rèn)為意識(shí)(思維)可以正確認(rèn)識(shí)物質(zhì)(存在)的,屬于可知論者;凡是認(rèn)為意識(shí)(思維)不能正確認(rèn)識(shí)物質(zhì)(存在),屬于不可知論者。當(dāng)然也有些同學(xué)是兩者觀點(diǎn)都有,這種同學(xué)我們把他稱為不徹底的不可知論者。2、為什么思維和存在的關(guān)系問(wèn)題是哲學(xué)的基本問(wèn)題(1)它是人們?cè)谏詈蛯?shí)踐活動(dòng)中首先遇到和無(wú)法回避的基本問(wèn)題(舉例說(shuō)明問(wèn)題,吃飯的時(shí)候吃什么菜,學(xué)習(xí)計(jì)劃與學(xué)習(xí)的實(shí)際等等)結(jié)合教材P10探究進(jìn)行講解舉例:11月31日請(qǐng)全班同學(xué)吃雪糕,吃完后再去肯德基大吃一頓,之后再到卡拉OK唱通宵——不切實(shí)際,因?yàn)?1月并沒(méi)有31日。(2)它是一切哲學(xué)都不能回避、必須回答的問(wèn)題(不同的回答,直接決定著哲學(xué)的不同發(fā)展方向。)

  • 人教版高中政治必修2參與政治生活的基礎(chǔ)和準(zhǔn)則說(shuō)課稿

    人教版高中政治必修2參與政治生活的基礎(chǔ)和準(zhǔn)則說(shuō)課稿

    觀點(diǎn)一:沒(méi)有無(wú)義務(wù)的權(quán)利,也沒(méi)有無(wú)權(quán)利的義務(wù);觀點(diǎn)二權(quán)利與義務(wù)是完全對(duì)等的。根據(jù)學(xué)生的回答,教師點(diǎn)撥歸納,一般來(lái)說(shuō),權(quán)利與義務(wù)是對(duì)等的,因?yàn)闆](méi)有義務(wù)的權(quán)利只能是特權(quán),而沒(méi)有權(quán)利的義務(wù)只能是奴役,只有將權(quán)利與義務(wù)有機(jī)結(jié)合起來(lái),才能構(gòu)成一個(gè)符合社會(huì)發(fā)展要求的公民社會(huì),在討論和思考中,使學(xué)生樹(shù)立正確的觀點(diǎn),引導(dǎo)學(xué)生多方面、多角度地辯證認(rèn)識(shí)權(quán)利與義務(wù)的關(guān)系。(3)個(gè)人利益和國(guó)家利益相結(jié)合的原則。引出汶川大地震中一些先進(jìn)人物事跡,但另外也有一些人發(fā)國(guó)難財(cái)?shù)娜?,如黑心棉事件等,針?duì)上述材料,請(qǐng)同學(xué)們談?wù)勛约旱目捶?。引?dǎo)學(xué)生理解國(guó)家和公民個(gè)人利益在根本上是一致的,當(dāng)個(gè)人利益與國(guó)家利益發(fā)生矛盾時(shí),個(gè)人利益要服從國(guó)家利益。通過(guò)案例分析,培養(yǎng)學(xué)生獲取信息的能力,自主學(xué)習(xí)的能力以及全面看問(wèn)題的能力,再結(jié)合教師的講授,給學(xué)生一種茅塞頓開(kāi)的感覺(jué)。

上一頁(yè)12345678910111213下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專注素材下載!