通常購買同一品種的西瓜時,西瓜的質(zhì)量越大,花費的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個西瓜的體積各是多少?(2)西瓜瓤與整個西瓜的體積比是多少?(3)買大西瓜合算還是買小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結(jié)果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個西瓜的體積是43πR3;(2)西瓜瓤與整個西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個西瓜的體積比是(R-d)3R3<1,故買大西瓜比買小西瓜合算.方法總結(jié):本題能夠根據(jù)球的體積,得到兩個物體的體積比即為它們的半徑的立方比是解此題的關(guān)鍵.
方法總結(jié):判斷軸對稱的條數(shù),仍然是根據(jù)定義進(jìn)行判斷,判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,注意不要遺漏.探究點二:兩個圖形成軸對稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對稱?解析:根據(jù)軸對稱的意義,經(jīng)過翻折,看兩個圖形能否完全重合,若能重合,則兩個圖形成軸對稱.解:(4)(5)(6).方法總結(jié):動手操作或結(jié)合軸對稱的概念展開想象,在腦海中嘗試完成一個動態(tài)的折疊過程,從而得到結(jié)論.三、板書設(shè)計1.軸對稱圖形的定義2.對稱軸3.兩個圖形成軸對稱這節(jié)課充分利用多媒體教學(xué),給學(xué)生以直觀指導(dǎo),主動向?qū)W生質(zhì)疑,促使學(xué)生思考與發(fā)現(xiàn),形成認(rèn)識,獨立獲取知識和技能.另外,借助多媒體教學(xué)給學(xué)生創(chuàng)設(shè)寬松的學(xué)習(xí)氛圍,使學(xué)生在學(xué)習(xí)中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學(xué)生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)
解1:設(shè)該多邊形邊數(shù)為n,這個外角為x°則 因為n為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因為 ,所以 解2:設(shè)該多邊形邊數(shù)為n,這個外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習(xí),鞏固提高1.七邊形的內(nèi)角和等于______度;一個n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個頂點可以畫7條對角線,則這個n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個多邊形的各個內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設(shè)計一個內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實現(xiàn)。(填“能”與“不能”)6. 如圖4,要測量A、B兩點間距離,在O點打樁,取OA的中點 C,OB的中點D,測得CD=30米,則AB=______米.
教學(xué)效果:部分學(xué)生能舉一反三,較好地掌握分式方程及其應(yīng)用題的有關(guān)知識與解決生活中的實際問題等基本技能.第六環(huán)節(jié) 課后練習(xí)四、教學(xué)反思數(shù)學(xué)來源于生活,并應(yīng)用于生活,讓學(xué)生用數(shù)學(xué)的眼光觀察生活,除了用所學(xué)的數(shù)學(xué)知識解決一些生活問題外,還可以從數(shù)學(xué)的角度來解釋生活中的一些現(xiàn)象,面向生活是學(xué)生發(fā)展的“源頭活水”.在解決實際生活問題的實例選擇上,我們盡量選擇學(xué)生熟悉的實例,如:學(xué)生身邊的事,購物,農(nóng)業(yè),工業(yè)等方面,讓學(xué)生真切地理解數(shù)學(xué)來源于生活這一事實。有些學(xué)生對應(yīng)用題有一種心有余悸的感覺,其關(guān)鍵是面對應(yīng)用題不知怎樣分析、怎樣找到等量關(guān)系。在教學(xué)中,如果采用列表的方法可幫助學(xué)生審題、找到等量關(guān)系,從而學(xué)會分析問題??赡軐W(xué)生最初并不適應(yīng)這種做法,可采用分步走的方法,首先,讓學(xué)生從一些簡單、類似的問題中模仿老師的分析方法,然后在練習(xí)中讓學(xué)生悟出解決問題的竅門,學(xué)會舉一反三,最后達(dá)到能獨立解決問題的目的。
答:所有陰影部分的面積和是5050cm2.方法總結(jié):首先應(yīng)找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認(rèn)真觀察、仔細(xì)思考,善用聯(lián)想來解決這類問題.三、板書設(shè)計1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點:能夠運用平方差公式分解因式的多項式必須是二項式,兩項都能寫成平方的形式,且符號相反.運用平方差公式因式分解,首先應(yīng)注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通??紤]應(yīng)用平方差公式;如果多項式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.
方法總結(jié):作平移圖形時,找關(guān)鍵點的對應(yīng)點是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應(yīng)點;②確定圖形中的關(guān)鍵點;③利用第一組對應(yīng)點和平移的性質(zhì)確定圖中所有關(guān)鍵點的對應(yīng)點;④按原圖形順序依次連接對應(yīng)點,所得到的圖形即為平移后的圖形.三、板書設(shè)計1.平移的定義在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移.2.平移的性質(zhì)一個圖形和它經(jīng)過平移所得的圖形中,對應(yīng)點所連的線段平行(或在一條直線上)且相等,對應(yīng)線段平行(或在一條直線上)且相等,對應(yīng)角相等.3.簡單的平移作圖教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,學(xué)生經(jīng)歷將實際問題抽象成圖形問題,培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,使得學(xué)生能將所學(xué)知識靈活運用到生活中.
四、說教法學(xué)法:本課主要采用知識遷移法、直觀教學(xué)法、引導(dǎo)發(fā)現(xiàn)法來教學(xué)。課上先復(fù)習(xí)整數(shù)乘分?jǐn)?shù),通過已掌握的整數(shù)乘分?jǐn)?shù)的意義就是表示一個數(shù)的幾分之幾是多少利用知識遷移規(guī)律自然引出1的是1×,1111的就是×,從而得出分?jǐn)?shù)乘分?jǐn)?shù)的意義同整數(shù)乘分?jǐn)?shù)一樣,都表示22221212一個數(shù)的幾分之幾是多少;結(jié)合多媒體直觀演示,進(jìn)一步幫助學(xué)生理解。在探討計算結(jié)果時,讓學(xué)生動手折一折,涂一涂,再借助圖形語言動態(tài)直觀演示,幫助學(xué)生梳理思維,同時也加深了學(xué)生對知識的理解。在方法的總結(jié)上,通過學(xué)生對幾個算式的觀察,引導(dǎo)學(xué)生發(fā)現(xiàn)分?jǐn)?shù)乘分?jǐn)?shù)就用分子相乘的積作分子,分母相乘的積作分母。本節(jié)課學(xué)生則主要通過自主探究、合作交流、練習(xí)的方法理解并掌握分?jǐn)?shù)乘分?jǐn)?shù)的意義及計算方法。五、說教學(xué)準(zhǔn)備:教師準(zhǔn)備多媒體課件、折紙。學(xué)生在操作手中有時會產(chǎn)生分歧或者折不出,課件的動態(tài)演示,會有力促進(jìn)學(xué)生的模型建立。
[此環(huán)節(jié)的設(shè)計意圖是利用情景激發(fā)學(xué)生探究的欲望,讓學(xué)生帶著輕松、愉悅的心情投入到新知的學(xué)習(xí)中。](二)自主探究感悟新知教育心理學(xué)告訴我們,學(xué)生應(yīng)當(dāng)有足夠的時間和空間經(jīng)歷觀察、實驗、猜測、計算、推理、驗證等活動過程。(在兒童的學(xué)習(xí)活動中,興趣起著定向和動力功能的雙重作用。)以這一理論為指導(dǎo),我設(shè)計了以下三個層次漸深的活動,大膽放手讓學(xué)生自主探究,從而突出重點、突破難點。活動一:理解分?jǐn)?shù)乘整數(shù)的意義。讓學(xué)生通過折一折的活動自主計算,并歸納整理出學(xué)生的三計算方法:①根據(jù)分?jǐn)?shù)的意義數(shù)一數(shù)是3/5;②加法計算1/5+1/5+1/5=3/5;③乘法計算3*1/5=3/5,展示在黑板上,引導(dǎo)學(xué)生通過觀察對比發(fā)現(xiàn),其實3*1/5就是3個1/5相加,由此感知到分?jǐn)?shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,只是這里的相同加數(shù)變成了分?jǐn)?shù)。
(四)、鞏固練習(xí)1.操場上打籃球的有4人,打籃球的人數(shù)是踢足球的 ,踢足球的有多少人?2.踢毽子的人數(shù)是踢足球人數(shù)的 ,踢毽子的有多少人?引導(dǎo)學(xué)生找出等量關(guān)系式,然后再解答。指名板演。3.某月雙休日共有9天,是這個月總天數(shù)的 ,這個月有多少天?(課件展示完整過程)(五)、課堂小結(jié),整理內(nèi)化1.我們這節(jié)課學(xué)習(xí)了用方程解決一類分?jǐn)?shù)除法應(yīng)用題的方法,你能來總結(jié)一下這類方法的一般步驟嗎?(師生回顧解決問題的步驟并總結(jié))2.課件展示一般步驟:用方程解答分?jǐn)?shù)除法應(yīng)用題的一般步驟:(1)分析題意,判斷單位“1”(即“總量”)。(2)寫出等量關(guān)系式。(3)設(shè)未知數(shù),列出方程。(4)解方程。(5)寫答語并檢驗。(六)、作業(yè):30頁2、3題
二、學(xué)情分析本單元是在學(xué)生已經(jīng)學(xué)習(xí)了整數(shù)除法、分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行教學(xué)的,是小學(xué)階段四則運算中最后一部分的內(nèi)容。學(xué)生學(xué)習(xí)了整數(shù)、小數(shù)的四則運算,而分?jǐn)?shù)只學(xué)習(xí)了加法、減法和乘法,因此對于學(xué)習(xí)分?jǐn)?shù)除法有一定的認(rèn)知需求,安排分?jǐn)?shù)除法教學(xué)符合學(xué)生的認(rèn)知發(fā)展特點。通過整數(shù)除法、分?jǐn)?shù)乘法的學(xué)習(xí),學(xué)生對計算的學(xué)習(xí)有一定的經(jīng)驗,并具有一定的解決問題的能力,這時候進(jìn)行分?jǐn)?shù)除法教學(xué),學(xué)生有能力將原有的計算方法和經(jīng)驗進(jìn)行遷移。學(xué)生在學(xué)習(xí)分?jǐn)?shù)乘法時,已經(jīng)掌握了一些解決分?jǐn)?shù)乘法問題的方法,這時候進(jìn)行分?jǐn)?shù)除法教學(xué)可以促進(jìn)知識之間的聯(lián)系,提高學(xué)生分析問題和解決問題的能力。教師在教學(xué)時,應(yīng)充分利用資源,激活學(xué)生已有的知識經(jīng)驗,引導(dǎo)他們展開類比思維,以促進(jìn)學(xué)習(xí)的正向遷移。三、教學(xué)目標(biāo)根據(jù)新課標(biāo)的要求和教材的特點,結(jié)合五年級學(xué)生的認(rèn)知能力,本節(jié)課我確定如下的教學(xué)目標(biāo):
說【教學(xué)《內(nèi)容】:北師大版五年級下冊數(shù)學(xué)第七單元《用方程解決問題》的第一課時《郵票的張數(shù)》。說【教材分析】;本節(jié)課是在四年級下冊所學(xué)的字母表示數(shù),初步認(rèn)識方程,會用等式的性質(zhì)解決簡單方程,會列方程解決簡單實際問題的基礎(chǔ)上進(jìn)行教學(xué)的。通過本節(jié)課的學(xué)習(xí),進(jìn)一步理解方程的意義,感受方程的思想方法和價值,經(jīng)歷尋找實際問題中數(shù)量之間的相等關(guān)系,列方程求解的全過程,培養(yǎng)學(xué)生分析問題,解決問題的能力。說【教學(xué)目標(biāo)】:知識和技能:1、通過解決姐弟二人的郵票張數(shù)問題,學(xué)會解形如“aⅹ±ⅹ=b”的方程,進(jìn)一步理解方程的意義。2、會分析簡單實際問題中的數(shù)量的相等關(guān)系,會用方程解決簡單的實際問題。過程和方法:在解決問題的過程中,體會列方程解決問題的優(yōu)點。情感、態(tài)度、價值觀:在解決問題的過程中,體會數(shù)學(xué)的價值,增強學(xué)習(xí)數(shù)學(xué)的興趣。
將三盒磁帶包成一包,共有幾種方案?怎樣包裝才能節(jié)約包裝紙?(接口處不計)這道題,我會組織每一位學(xué)生進(jìn)行擺一擺、想一想、算出最優(yōu)方案。此時,學(xué)生對于包裝的問題已經(jīng)有了從感性到理性的認(rèn)識,因此,可以讓學(xué)生將前面總結(jié)出來的規(guī)律進(jìn)行完善,突出了教學(xué)重點。教師板書:重疊面積大的面,會節(jié)約包裝紙。(四)綜合實踐,提高能力。在這一環(huán)節(jié),我設(shè)計了一道題。如果把4盒磁帶包裝成一大盒。怎樣包裝才最節(jié)約包裝紙?此題讓學(xué)生小組合作動手?jǐn)[一擺。學(xué)生匯報時,教師多媒體演示:學(xué)生根據(jù)前面總結(jié)出來的規(guī)律,會立刻回答出是第一種方案。此環(huán)節(jié)的設(shè)計,使學(xué)生在運用規(guī)律的基礎(chǔ)上能夠解決實際問題,得到最優(yōu)方案,也突破了教學(xué)難點。(五)課堂總結(jié)。這一環(huán)節(jié),我會讓學(xué)生說一說自己的學(xué)習(xí)體會。然后送給學(xué)生兩條名言。
在展示交流,精講點撥環(huán)節(jié)學(xué)生答題過程中老師巡視,發(fā)現(xiàn)不同的方法讓學(xué)生去板演。1、學(xué)生展示學(xué)生展示不同的方法,并進(jìn)行講解,讓學(xué)生充分說出自己的思路及解題過程。在這一環(huán)節(jié),學(xué)生進(jìn)行了充分的互動,有質(zhì)疑,有解疑,有糾錯,有評價,有反饋,。2、教師根據(jù)學(xué)生的方法及時利用多媒體進(jìn)行演示,讓學(xué)生更加直觀的理解不同的解題思路。然后變換題中的條件,讓學(xué)生自己列方程解答。3、說一說生活中那些情境也可以用類似的等量關(guān)系式解答,這一設(shè)計讓數(shù)學(xué)回歸生活,加強了數(shù)學(xué)與生活的聯(lián)系。在達(dá)標(biāo)檢測,強化鞏固環(huán)節(jié)老師以課本為主,讓學(xué)生完成課本練一練的2,4基礎(chǔ)題。又進(jìn)行了拓展,出了一道稍有難度的題進(jìn)行拓展練習(xí)。既鞏固了基礎(chǔ),又做到了分層優(yōu)化。在小結(jié)評價,自我反思環(huán)節(jié)讓學(xué)生說說本節(jié)課的收獲,可以是學(xué)習(xí)上的,也可以是習(xí)慣上的。讓學(xué)生進(jìn)行了自我反思,反思自己的不足,加以改正。
3.設(shè)計實驗。怎樣測量一粒黃豆的體積。這是在第二題的基礎(chǔ)上進(jìn)行的一個設(shè)計實驗,再次回到“有趣的測量”,讓學(xué)生不僅會計算,還要會自己想辦法測量生活中的很多不規(guī)則物體的體積,這也是我們這節(jié)課要達(dá)到的目的。練習(xí)完之后教師再適時將學(xué)生帶進(jìn)數(shù)學(xué)萬花筒,感受兩千多年前阿基米德的風(fēng)采,激發(fā)了學(xué)生對數(shù)學(xué)的興趣,增強他們主動探索科學(xué)知識的意識。(四)、總結(jié)回顧評價反思在這一環(huán)節(jié)讓學(xué)生講一講收獲、談一談感受,讓學(xué)生自己評價自己,使學(xué)生體驗到成功探索和解決問題的樂趣,樹立學(xué)好數(shù)學(xué)的信心,為學(xué)生自主探索提供更為廣闊的空間六、說板書設(shè)計本節(jié)課我采用重點內(nèi)容提綱式板書,簡單明了,重點突出。利用不同色彩的區(qū)分吸引學(xué)生的注意力,突出“轉(zhuǎn)化”這一重要思想。
一、說教材:1.說課內(nèi)容:本節(jié)課的內(nèi)容是北師大版5年級數(shù)學(xué)下冊第8單元的《復(fù)式折線統(tǒng)計圖》。2.教材分析:這節(jié)課的內(nèi)容是在學(xué)生學(xué)習(xí)了單式折線統(tǒng)計圖和復(fù)式條形統(tǒng)計圖的基礎(chǔ)上教學(xué)的。這節(jié)課的內(nèi)容包括制作復(fù)式折線統(tǒng)計圖的必要性、制作方法以及對這種統(tǒng)計圖的分析預(yù)測。教材在設(shè)計中,主要突出了以下兩個方面:(1)對比。為了方便比較甲、乙兩個城市各月的降水量,把兩個單式折線統(tǒng)計圖畫在同一幅圖上,變成復(fù)式折線統(tǒng)計圖。讓學(xué)生感受出現(xiàn)復(fù)式折線統(tǒng)計圖的必要性和其帶來的好處。(2)讀圖。通過對復(fù)式折線統(tǒng)計圖中兩條折線升降的分析,對數(shù)據(jù)進(jìn)行合理的預(yù)測,這也是課標(biāo)的要求。3.教材的地位和作用:本課的學(xué)習(xí),不但可以用來解決日常生活中的一些實際問題,也是今后學(xué)習(xí)更多其他統(tǒng)計圖的重要基礎(chǔ)。
依據(jù)本節(jié)課的知識結(jié)構(gòu)與學(xué)生的認(rèn)知規(guī)律,這節(jié)課我是這樣安排的:第一個環(huán)節(jié):談話交流,引入課題。先出示一個正方體。讓學(xué)生說一說對正方體的認(rèn)識,再讓學(xué)生觀察能看到幾個面?分別是什么面?接著教師引出,既然同學(xué)們最多只能看見正方體的3個面,所以老師說這個正方體只有3個面露在外面。經(jīng)過學(xué)生思考,確定還有兩個面露在外面,然后出示課題-----露在外面的面。第二個環(huán)節(jié):探索新知,發(fā)現(xiàn)規(guī)律。在這個環(huán)節(jié)中,我首先呈現(xiàn)一個擺放在墻角的小正方體:讓孩子們觀察有幾個面露在外面,是哪幾個面?這是一個簡單的問題,學(xué)生通過觀察都可以看到露在外面的面分別是上面,前面和側(cè)面。然后計算露在外面的面的面積。學(xué)生自己嘗試計算時,都能找到方法:計算一個小正方形的面積再乘以露在外面的面數(shù)就可以了。
學(xué)生掌握數(shù)學(xué)概念過程的本身就是一個把教材知識結(jié)構(gòu)轉(zhuǎn)化成自己認(rèn)知結(jié)構(gòu)的過程,這一過程的結(jié)果可能形成正確的數(shù)學(xué)概念,也可能由于主、客觀原因而形成一些錯誤的數(shù)學(xué)概念。因此,在這一階段有兩大任務(wù)要完成,一是強化已經(jīng)形成的正確認(rèn)識,二是修正某些錯誤認(rèn)識,使掌握的概念都能正確反映數(shù)學(xué)對象的本質(zhì)屬性。在情境中解決問題是從新課教學(xué)到學(xué)生獨立作業(yè)之間的一個重要環(huán)節(jié),目的在于鞏固所學(xué)知識,并把知識轉(zhuǎn)化為技能。教材“試一試”和“練一練”的第1、2題,讓學(xué)生通過觀察、思考,并且在有了比較充分的感性體驗的基礎(chǔ)上揭示體積概念及讓學(xué)生充分感受同一物體形狀變了,但體積保持不變,增強實際體驗?!熬氁痪殹钡?題,讓學(xué)生體會到如果每個杯子的大小不同,那么3杯就可能等于2杯,這是為后面體積單位作鋪墊。
(一)說教法本節(jié)課我先出示情境圖,鼓勵學(xué)生分析情境中的數(shù)學(xué)信息和數(shù)量關(guān)系,明確所要解決的問題,然后了解要解決這個問題需要什么樣的條件,進(jìn)而列出算式。接著討論具體的計算方法。教材中呈現(xiàn)了兩種計算方法。在這個過程中,先讓學(xué)生自主進(jìn)行計算,再組織討論和交流算法之間的聯(lián)系,明白分?jǐn)?shù)混合運算的順序。通過本節(jié)教學(xué),使學(xué)生學(xué)會有順序的觀察題、認(rèn)真審題、分析數(shù)量關(guān)系、正確計算、概括總結(jié)、檢查的學(xué)習(xí)習(xí)慣。(二)說學(xué)法本節(jié)課是分?jǐn)?shù)加減法的第二課時,因為前面學(xué)習(xí)異分母分?jǐn)?shù)的加減法以及應(yīng)用異分母加減的知識,因此,大多數(shù)學(xué)生對這一類型的加減法已經(jīng)有了一定的計算能力和計算方法,基于此,我在教學(xué)中將加減運算的學(xué)習(xí)和解決問題結(jié)合起來,在加強學(xué)生的計算能力的同時,更側(cè)重了學(xué)生提出問題和解決問題的能力的訓(xùn)練,也就是讓學(xué)生在經(jīng)歷探索運算方法的過程中,體驗算法多樣化。
本環(huán)節(jié)運用了一個階梯式的問答方法,幫助突破本節(jié)課的難點。同時,從具體的實際問題入手,由特殊問題到一般規(guī)律的揭示,不僅解決了難點問題,而且從另外一個角度講也滲透給了學(xué)生的數(shù)形結(jié)合思想,還有利于學(xué)生主動探索意識的培養(yǎng)。4、自主評價本環(huán)節(jié)主要是應(yīng)用本節(jié)課所學(xué)的知識以及所積累形成的學(xué)習(xí)經(jīng)驗和體驗解決問題的過程,即課堂鞏固訓(xùn)練。在練習(xí)題的選擇上,由簡單到復(fù)雜。先是結(jié)合圖象獲取信息進(jìn)行簡單的填空和選擇,此題屬于A組題型,檢驗學(xué)生的掌握情況;然后進(jìn)行了一道B組題,關(guān)于“一次函數(shù)與一元一次方程的關(guān)系”知識點的靈活運用,進(jìn)一步通過練習(xí)體會它們的關(guān)系。5、自主發(fā)展:最后一道則是特殊的區(qū)別于之前所學(xué)習(xí)的分段函數(shù)練習(xí),發(fā)散學(xué)生思維問題的訓(xùn)練。讓學(xué)生體會分段函數(shù)的特點,并掌握求分段函數(shù)解析式的方法。
[互動2]師:請大家從上面的解題經(jīng)歷中,總結(jié)一下如果已知函數(shù)的圖象,怎樣求函數(shù)的表達(dá)式?小組討論之后再發(fā)表意見。生:第一步根據(jù)圖象,確定這個函數(shù)是正比例函數(shù)或是一次函數(shù);第二步設(shè)函數(shù)表達(dá)式;第三步:根據(jù)表達(dá)式列等式,若是正比例函數(shù),只要找圖象上一個點的坐標(biāo)就可以了;若是一次函數(shù),則需要找到圖象上兩個點的坐標(biāo),然后把點的坐標(biāo)分別代入所設(shè)的解析式中,組成關(guān)于R、b的一個或兩個方程。第四步:求出R、b的值第五步:把R、b的值代回到表達(dá)式中就可以了。師:分析得太好了。那么,大家說一說,確定正比例函數(shù)的表達(dá)式需要幾個條件?確定一次函數(shù)的表達(dá)式呢?要說明理由。生:確定正比例函數(shù)需要一個條件,而確定一次函數(shù)需要兩個條件。原因是正比例函數(shù)的表達(dá)式:y=Rx(R≠0)中,只有一個系數(shù)R,而一次函數(shù)的表達(dá)式y(tǒng)=Rx+b(R≠0)中,有兩個系數(shù)(待定)R和b。