本章通過學習用二分法求方程近似解的的方法,使學生體會函數與方程之間的關系,通過一些函數模型的實例,讓學生感受建立函數模型的過程和方法,體會函數在數學和其他學科中的廣泛應用,進一步認識到函數是描述客觀世界變化規(guī)律的基本數學模型,能初步運用函數思想解決一些生活中的簡單問題。1.了解函數的零點、方程的根與圖象交點三者之間的聯(lián)系.2.會借助零點存在性定理判斷函數的零點所在的大致區(qū)間.3.能借助函數單調性及圖象判斷零點個數.數學學科素養(yǎng)1.數學抽象:函數零點的概念;2.邏輯推理:借助圖像判斷零點個數;3.數學運算:求函數零點或零點所在區(qū)間;4.數學建模:通過由抽象到具體,由具體到一般的思想總結函數零點概念.重點:零點的概念,及零點與方程根的聯(lián)系;難點:零點的概念的形成.
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設它們確定的平面為β,則B∈β, 由于經過點B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內不經過交點的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關系?并畫圖說明.解: 直線a與直線c的位置關系可以是平行、相交、異面.如圖(1)(2)(3).總結:判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號語言:任意a?α,都有l(wèi)⊥a?l⊥α.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.
《數學1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學生根據具體的函數圖象能夠借助計算機或信息技術工具計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數與方程之間的聯(lián)系;它既是本冊書中的重點內容,又是對函數知識的拓展,既體現(xiàn)了函數在解方程中的重要應用,同時又為高中數學中函數與方程思想、數形結合思想、二分法的算法思想打下了基礎,因此決定了它的重要地位.發(fā)展學生數學直觀、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.通過具體實例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計算器用二分法求方程的近似解.3.會用二分法求一個函數在給定區(qū)間內的零點,從而求得方程的近似解. a.數學抽象:二分法的概念;b.邏輯推理:運用二分法求近似解的原理;
本節(jié)通過學習用二分法求方程近似解的的方法,使學生體會函數與方程之間的關系,通過一些函數模型的實例,讓學生感受建立函數模型的過程和方法,體會函數在數學和其他學科中的廣泛應用,進一步認識到函數是描述客觀世界變化規(guī)律的基本數學模型,能初步運用函數思想解決一些生活中的簡單問題。課程目標1.了解二分法的原理及其適用條件.2.掌握二分法的實施步驟.3.通過用二分法求方程的近似解,使學生體會函數零點與方程根之間的聯(lián)系,初步形成用函數觀點處理問題的意識.數學學科素養(yǎng)1.數學抽象:二分法的概念;2.邏輯推理:用二分法求函數零點近似值的步驟;3.數學運算:求函數零點近似值;4.數學建模:通過一些函數模型的實例,讓學生感受建立函數模型的過程和方法,體會函數在數學和其他學科中的廣泛應用.
【教學目標】知識目標:理解直線的點斜式方程、斜截式方程、橫截距、縱截距的概念;掌握直線的點斜式方程、斜截式方程的確定.能力目標:通過求解直線的點斜式方程和斜截式方程,培養(yǎng)學生的數學思維能力與數形結合的數學思想.情感目標:通過學習直線的點斜式方程和斜截式方程,體會數形結合的直觀感受.【教學重點】直線的點斜式方程、斜截式方程的確定.【教學難點】直線的點斜式方程、斜截式方程的確定.
【教學重點】直線的點斜式方程、斜截式方程的確定.【教學難點】直線的點斜式方程、斜截式方程的確定.【教學過程】1、對特殊三角函數進行鞏固復習;表1 內特殊三角函數值 不存在圖1 特殊三角形2、鞏固復習直線的傾斜角和斜率相關內容;直線的傾斜角:,;直線的斜率: , ;設點為直線l上的任意兩點,當時,
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.3.2節(jié)《對數的運算》。其核心是弄清楚對數的定義,掌握對數的運算性質,理解它的關鍵就是通過實例使學生認識對數式與指數式的關系,分析得出對數的概念及對數式與指數式的 互化,通過實例推導對數的運算性質。由于它還與后續(xù)很多內容,比如對數函數及其性質,這也是高考必考內容之一,所以在本學科有著很重要的地位。解決重點的關鍵是抓住對數的概念、并讓學生掌握對數式與指數式的互化;通過實例推導對數的運算性質,讓學生準確地運用對數運算性質進行運算,學會運用換底公式。培養(yǎng)學生數學運算、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。1、理解對數的概念,能進行指數式與對數式的互化;2、了解常用對數與自然對數的意義,理解對數恒等式并能運用于有關對數計算。
學生已經學習了指數運算性質,有了這些知識作儲備,教科書通過利用指數運算性質,推導對數的運算性質,再學習利用對數的運算性質化簡求值。課程目標1、通過具體實例引入,推導對數的運算性質;2、熟練掌握對數的運算性質,學會化簡,計算.數學學科素養(yǎng)1.數學抽象:對數的運算性質;2.邏輯推理:換底公式的推導;3.數學運算:對數運算性質的應用;4.數學建模:在熟悉的實際情景中,模仿學過的數學建模過程解決問題.重點:對數的運算性質,換底公式,對數恒等式及其應用;難點:正確使用對數的運算性質和換底公式.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入回顧指數性質:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對數有哪些性質?如 要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.
對數與指數是相通的,本節(jié)在已經學習指數的基礎上通過實例總結歸納對數的概念,通過對數的性質和恒等式解決一些與對數有關的問題.課程目標1、理解對數的概念以及對數的基本性質;2、掌握對數式與指數式的相互轉化;數學學科素養(yǎng)1.數學抽象:對數的概念;2.邏輯推理:推導對數性質;3.數學運算:用對數的基本性質與對數恒等式求值;4.數學建模:通過與指數式的比較,引出對數定義與性質.重點:對數式與指數式的互化以及對數性質;難點:推導對數性質.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入已知中國的人口數y和年頭x滿足關系 中,若知年頭數則能算出相應的人口總數。反之,如果問“哪一年的人口數可達到18億,20億,30億......”,該如何解決?要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.
函數在高中數學中占有很重要的比重,因而作為函數的第一節(jié)內容,主要從三個實例出發(fā),引出函數的概念.從而就函數概念的分析判斷函數,求定義域和函數值,再結合三要素判斷函數相等.課程目標1.理解函數的定義、函數的定義域、值域及對應法則。2.掌握判定函數和函數相等的方法。3.學會求函數的定義域與函數值。數學學科素養(yǎng)1.數學抽象:通過教材中四個實例總結函數定義;2.邏輯推理:相等函數的判斷;3.數學運算:求函數定義域和求函數值;4.數據分析:運用分離常數法和換元法求值域;5.數學建模:通過從實際問題中抽象概括出函數概念的活動,培養(yǎng)學生從“特殊到一般”的分析問題的能力,提高學生的抽象概括能力。重點:函數的概念,函數的三要素。難點:函數概念及符號y=f(x)的理解。
例7 用描述法表示拋物線y=x2+1上的點構成的集合.【答案】見解析 【解析】 拋物線y=x2+1上的點構成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變設問]本題中點的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實數.變式2.[變條件,變設問]本題中點的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實數.解題技巧(認識集合含義的2個步驟)一看代表元素,是數集還是點集,二看元素滿足什么條件即有什么公共特性。
一、復習回顧,溫故知新1. 任意角三角函數的定義【答案】設角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導公式一 ,其中, 。終邊相同的角的同一三角函數值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數值有什么關系?【答案】相等(2).角 -α與α的終邊 有何位置關系?【答案】終邊關于x軸對稱(3).角 與α的終邊 有何位置關系?【答案】終邊關于y軸對稱(4).角 與α的終邊 有何位置關系?【答案】終邊關于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學們思考回答點P關于原點、x軸、y軸對稱的三個點的坐標是什么?【答案】點P(x, y)關于原點對稱點P1(-x, -y)點P(x, y)關于x軸對稱點P2(x, -y) 點P(x, y)關于y軸對稱點P3(-x, y)
《基本不等式》在人教A版高中數學第一冊第二章第2節(jié),本節(jié)課的內容是基本不等式的形式以及推導和證明過程。本章一直在研究不等式的相關問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內容也是之后基本不等式應用的必要基礎。課程目標1.掌握基本不等式的形式以及推導過程,會用基本不等式解決簡單問題。2.經歷基本不等式的推導與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數學的嚴謹性。數學學科素養(yǎng)1.數學抽象:基本不等式的形式以及推導過程;2.邏輯推理:基本不等式的證明;3.數學運算:利用基本不等式求最值;4.數據分析:利用基本不等式解決實際問題;5.數學建模:利用函數的思想和基本不等式解決實際問題,提升學生的邏輯推理能力。重點:基本不等式的形成以及推導過程和利用基本不等式求最值;難點:基本不等式的推導以及證明過程.
本節(jié)主要內容是三角函數的誘導公式中的公式二至公式六,其推導過程中涉及到對稱變換,充分體現(xiàn)對稱變換思想在數學中的應用,在練習中加以應用,讓學生進一步體會 的任意性;綜合六組誘導公式總結出記憶誘導公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數學思想的探究過程,培養(yǎng)學生用聯(lián)系、變化的辯證唯物主義觀點去分析問題的能力。誘導公式在三角函數化簡、求值中具有非常重要的工具作用,要求學生能熟練的掌握和應用。課程目標1.借助單位圓,推導出正弦、余弦第二、三、四、五、六組的誘導公式,能正確運用誘導公式將任意角的三角函數化為銳角的三角函數,并解決有關三角函數求值、化簡和恒等式證明問題2.通過公式的應用,了解未知到已知、復雜到簡單的轉化過程,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。
《奇偶性》內容選自人教版A版第一冊第三章第三節(jié)第二課時;函數奇偶性是研究函數的一個重要策略,因此奇偶性成為函數的重要性質之一,它的研究也為今后指對函數、冪函數、三角函數的性質等后續(xù)內容的深入起著鋪墊的作用.課程目標1、理解函數的奇偶性及其幾何意義;2、學會運用函數圖象理解和研究函數的性質;3、學會判斷函數的奇偶性.數學學科素養(yǎng)1.數學抽象:用數學語言表示函數奇偶性;2.邏輯推理:證明函數奇偶性;3.數學運算:運用函數奇偶性求參數;4.數據分析:利用圖像求奇偶函數;5.數學建模:在具體問題情境中,運用數形結合思想,利用奇偶性解決實際問題。重點:函數奇偶性概念的形成和函數奇偶性的判斷;難點:函數奇偶性概念的探究與理解.教學方法:以學生為主體,采用誘思探究式教學,精講多練。
本節(jié)課選自《普通高中課程標準數學教科書-必修一》(人 教A版)第五章《三角函數》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數學抽象:角的概念;2.邏輯推理:象限角的表示;3.數學運算:判斷角所在象限;4.直觀想象:從特殊到一般的數學思想方法;
學生在初中學習了 ~ ,但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.因此為了準確描述這些現(xiàn)象,本節(jié)課主要就旋轉度數和旋轉方向對角的概念進行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數學學科素養(yǎng)1.數學抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數學運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉一周回到起始位置,在這個過程中可以得到 ~ 范圍內的角.但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.4.2節(jié)《對數函數的圖像和性質》 是高中數學在指數函數之后的重要初等函數之一。對數函數與指數函數聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質,都有其共通之處。相較于指數函數,對數函數的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數學提供了更多角度的分析方法。培養(yǎng)和發(fā)展學生邏輯推理、數學直觀、數學抽象、和數學建模的核心素養(yǎng)。1、掌握對數函數的圖像和性質;能利用對數函數的圖像與性質來解決簡單問題;2、經過探究對數函數的圖像和性質,對數函數與指數函數圖像之間的聯(lián)系,對數函數內部的的聯(lián)系。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數學交流能力;滲透類比等基本數學思想方法。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。