(分析:北京的商業(yè)中心分布和變化大致分三個階段:鐘鼓樓市場、三足鼎立格局形成、環(huán)路沿線商業(yè)中心出現(xiàn)。相對應的交通變化,鐘鼓樓市場衰退與大運河運輸?shù)匚凰ヂ?、運輸方式的變化密切相關,后兩個階段與城市交通干線形態(tài)變化緊密聯(lián)系)?!渤修D〕商業(yè)中心的發(fā)展是隨著交通的發(fā)展而變化的,集鎮(zhèn)也是在交通要道上發(fā)展起來 的。(3)對集鎮(zhèn)發(fā)展的影響〔舉例說明〕陜西省勉縣的長林鎮(zhèn),過去地處漢中經(jīng)褒河去甘肅、四川的必經(jīng)之路,來往客商眾多,商業(yè)十分繁榮。后來由于改線,集鎮(zhèn)逐漸衰落,至今連定期的集市貿易都沒有了,完全退化為單純的居民點。以及運河沿線城鎮(zhèn)如山東等的興衰,亦可說明交通線的改變對聚落的影響?!部偨Y〕交通線路的改變常會引起集鎮(zhèn)的繁榮或衰落。
觀察實驗視頻實驗驗證師:其實大家完全可以利用身邊的器材來驗證。實驗1、用彈簧秤掛上鉤碼,然后迅速上提和迅速下放?,F(xiàn)象:在鉤碼被迅速上提的一瞬間,彈簧秤讀數(shù)突然變大;在鉤碼被迅速下放的一瞬間,彈簧秤讀數(shù)突然變小。師:迅速上提時彈簧秤示數(shù)變大是超重還是失重?迅速下放時彈簧秤示數(shù)變小是超重還是失重?生:迅速上提超重,迅速下放失重。體會為何用彈簧秤測物體重力時要保證在豎直方向且保持靜止或勻速實驗2、學生站在醫(yī)用體重計上,觀察下蹲和站起時秤的示數(shù)如何變化?在實驗前先讓同學們理論思考示數(shù)會如何變化再去驗證,最后再思考。(1)在上升過程中可分為兩個階段:加速上升、減速上升;下蹲過程中也可分為兩個階段:加速下降、減速下降。(2)當學生加速上升和減速下降時會出現(xiàn)超重現(xiàn)象;當學生加速下降和減速上升時會出現(xiàn)失重現(xiàn)象;(3)出現(xiàn)超重現(xiàn)象時加速度方向向上,出現(xiàn)失重現(xiàn)象時加速度方向向下。完全失重
(四)實例探究☆力和運動的關系1、一個物體放在光滑水平面上,初速為零,先對物體施加一向東的恒力F,歷時1秒,隨即把此力改變?yōu)橄蛭?,大小不變,歷時1秒鐘,接著又把此力改為向東,大小不變,歷時1秒鐘,如此反復只改變力的方向,共歷時1分鐘,在此1分鐘內A.物體時而向東運動,時而向西運動,在1分鐘末靜止于初始位置之東B.物體時而向東運動,時而向西運動,在1分鐘末靜止于初始位置C.物體時而向東運動,時而向西運動,在1分鐘末繼續(xù)向東運動D.物體一直向東運動,從不向西運動,在1分鐘末靜止于初始位置之東☆牛頓運動定律的應用2、用30N的水平外力F,拉一靜止放在光滑的水平面上質量為20kg的物體,力F作用3秒后消失,則第5秒末物體的速度和加速度分別是A.v=7.5m/s,a=l.5m/s2B.v=4.5m/s,a=l.5m/s2C.v=4.5m/s,a=0D.v=7.5m/s,a=0
(2)修建通向西藏的鐵路,要克服哪些自然障礙?①凍土的季節(jié)凍融作用使路基不穩(wěn)固,也使修路技術難度大,成本高②生態(tài)脆弱,植被破壞后難以修復③高原缺氧,使施工困難④廣布的荒漠,多山的地形都使建設難度加大(3)結合初中所學知識分析,未來穿行于青藏高原鐵路運輸線上的貨車中主要運輸?shù)呢浳镉心男??以鹽湖中礦物為原料的化工產品,有色金屬及其加工產品,畜產品及外省運入的各種工業(yè)品等?!究偨Y新課】交通運輸網(wǎng)的基本要素包括:交通線(鐵路、公路、航道、管道)和交通點(港口、車站、航空港);運輸網(wǎng)有單一和綜合運輸網(wǎng)二種形式。分國家級、省級和大區(qū)級三個層次。交通運輸網(wǎng)的點線布局受經(jīng)濟、社會、技術和自然等因素的影響?!菊n后作業(yè)】:完成高一地理第二冊填圖冊 第五章第一節(jié)
同學們,你是否為了偶然的失敗而懊意苦惱,難有東山再起的雄心壯志?你是否曾經(jīng)為了前途渺茫而黯然傷神?如果有過,那么你又是否思考過,把信心留給自己,重新讓自己昂首挺胸地奔向自己的錦繡前程呢?人生如海上行舟,不知何時就會遭到惡浪和風暴的襲擊。既然我們來到人間,就應該用青春的鐮刀去披荊斬棘。懦弱的人站在雨中怕淋濕,站在陽光下怕曬黑,如此命運只能讓他們在山腳下徘徊。恰恰相反,勇敢的水手從來不懼怕風高浪險,因為他們深知涉淺水者得魚蝦,涉深水者得蛟龍,年輕人不要畏首畏尾。請在自己心中樹立一個永恒的信念——沒有比腳更長的路,沒有比心更高的山。是的,腳比路長,遠方無論有多么遠,經(jīng)過雙足跋涉,終會抵達,人生亦是如此。我們不怕目標高遠,只怕沒有追尋的勇氣、熱情和執(zhí)著。只要心頭時時燃燒著堅定的信念,一往無前的行進下去,就會驚訝的發(fā)現(xiàn)--很多所謂的遠方并不那么遙遠。
老師,同學們:六月,不僅有大家熟悉的兒童節(jié)和父親節(jié),還有一個特別有意義的日子——世界環(huán)境日。一直以來,我們賴以生存的環(huán)境,引起了許多有識之士的極大關注。1972年6月5日,在人類環(huán)境會議上,通過了著名的《人類環(huán)境宣言》。同年10月,第27屆聯(lián)合國大會通過決議,將以后每年的6月5日定為世界環(huán)境日。我們都知道美麗的自然環(huán)境,能帶給我們愉快的心情,帶給我們學習和工作的良好氛圍。但是,人們在享受大自然的恩惠時,卻粗心地忘記了去保護這些美麗的景色,以至于如今,生態(tài)環(huán)境不斷惡化:森林退化,塵土飛揚,水土流失,洪水肆虐,酸雨赤潮,南極空洞……各種環(huán)境問題接踵而至。聯(lián)合國環(huán)境署曾發(fā)布環(huán)境調查結果:地球上有億人口生活在混濁的空氣中,12億人口生活缺水,12%的哺乳動物和11%的鳥類瀕臨滅絕,每年地表土壤流失四百億噸,森林以每年450萬公頃的速度消失……這些觸目驚心的數(shù)字仍在不斷增長著。這為我們敲響了警鐘:保護環(huán)境已刻不容緩!
(四)第四板塊——感動生命的堅強我們對學生的教育,不能只限于理論的說教,空洞的說教既沒有效果,也不易被學生接受。于是我設計由王茂川配著和協(xié)的音樂講故事。故事一: 瓦礫下傳來那熟悉的歌地震后將近兩天,救援隊在北川縣一處幼兒園的廢墟中,發(fā)現(xiàn)了一個被困的小女孩。孩子雙腳被卡住,下半身沾滿鮮血,生命危在旦夕。就在此時,救援隊突然聽到小女孩的聲音,“叔叔,我不怕,你們不要擔心。 ”小女孩反倒安慰起救援隊員。救援隊因工具簡陋,救援速度很慢,就在大家著急時,卻聽到孩子唱起歌來。獲救后,小女孩說:“我唱歌就不會覺得痛。一個柔弱的小女孩,在生命受到威脅的緊急關頭,懷著對生存的渴望,用稚嫩的小手,演繹了一場生命在尊嚴面前的不屈壯歌!這個小女孩名叫思雨,她在瓦礫中哼唱著《兩只老虎》這首童謠。當瓦礫下傳來這首中國兒童都熟悉的旋律時,小思雨她感動了整個中國。
二、學情分析:學生目前對形變和彈力有一定的感性認識但是不夠深入;知道支持力、壓力都是彈力,但是不能夠概括產生的原因。理性思維還沒有達到一定的層次,要想理解彈力這一抽象概念還有一定困難。因此我采取引導、啟發(fā)的教學方式。
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學生已經(jīng)學過一元二次方程與二次函數(shù)的關系,本節(jié)課的內容就是在此基礎上的推廣。從而建立一般的函數(shù)的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1、了解函數(shù)(結合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關系,掌握零點存在性定理的運用;3、在認識函數(shù)零點的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數(shù)學數(shù)形結合及函數(shù)思想; a.數(shù)學抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學建模:運用函數(shù)的觀點方程的根;
本章通過學習用二分法求方程近似解的的方法,使學生體會函數(shù)與方程之間的關系,通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。1.了解函數(shù)的零點、方程的根與圖象交點三者之間的聯(lián)系.2.會借助零點存在性定理判斷函數(shù)的零點所在的大致區(qū)間.3.能借助函數(shù)單調性及圖象判斷零點個數(shù).數(shù)學學科素養(yǎng)1.數(shù)學抽象:函數(shù)零點的概念;2.邏輯推理:借助圖像判斷零點個數(shù);3.數(shù)學運算:求函數(shù)零點或零點所在區(qū)間;4.數(shù)學建模:通過由抽象到具體,由具體到一般的思想總結函數(shù)零點概念.重點:零點的概念,及零點與方程根的聯(lián)系;難點:零點的概念的形成.
1.圈點、勾畫重要詞語評點的讀書習慣和方法。如全出描繪秋色的詞語,標出傳遞秋聲的詞語,點評北國故都秋色的詞語、南國秋色的詞語,攝取主要信息。2.口、耳、手、腦并用的讀書習慣和方法。如默讀、聽讀、跟讀時,不動筆墨不看書,不動思維不讀書。3.學以致用的遷移運用方法。如投影儀的練習設計,讓學生由品文到品讀詩詞等。四、說教學程序(一)導語激趣人們常說,良好的開端是成功的一半,因而導語也就顯得十分重要。好的導語能營造適宜的課堂氛圍,集中學生的注意力,調動學生的學習情緒,使學生對學習的內容產生濃厚的興趣。這篇課文的導語我是這樣來設計的:同學們,自古詩家多愛秋,因為秋是文人心中的一粒愁種子?!盁o邊落木蕭蕭下,不盡長江滾滾來?!边@是杜甫面對秋風登高而抒懷;“梧桐更兼細雨,到黃昏,點點滴滴。這次第,怎一個愁字了得。”這是李清照面對秋雨而吟詠愁情。秋風秋雨愁煞人啦。
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學生回顧本節(jié)課知識點,教師補充。 讓學生掌握本節(jié)課知識點,并能夠靈活運用。
【課件展示】《秦朝中央集權制度的建立》《教材簡析》《教學目標》《教法簡介》《教學過程設計及特色簡述》【師】本節(jié)內容以秦代政治體制和官僚系統(tǒng)的建立為核心內容,主要包括秦朝中央集權制的建立的背景、建立過程及影響。本節(jié)內容在整個單元中起到承前啟后的作用,在整個模塊中也有相當重要的地位。讓學生了解中國古代中央集權政治體制的初建對于理解我國古代政治制度的發(fā)展乃至我們今天的政治體制是十分必要的。 本堂課我采用多媒體和講授法及歷史辯論法相結合,通過巧妙設計問題情境,調動學生的學習積極性,使學生主動學習,探究思考。教師引導和組織學生采取小組討論、情景體驗等方式,達到教學目標。 本節(jié)內容分三個部分,下面首先看秦朝中央集權制度建立的前提即秦的統(tǒng)一
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.3節(jié)《不同增長函數(shù)的差異》 是在學習了指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)之后的對函數(shù)學習的一次梳理和總結。本節(jié)提出函數(shù)增長快慢的問題,通過函數(shù)圖像及三個函數(shù)的性質,完成函數(shù)增長快慢的認識。既是對三種函數(shù)學習的總結,也為后續(xù)導數(shù)的學習做了鋪墊。培養(yǎng)和發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長差異.2、經(jīng)過探究對函數(shù)的圖像觀察,理解對數(shù)增長、直線上升、指數(shù)爆炸。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;3、在認識函數(shù)增長差異的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數(shù)學應用的意識,探索數(shù)學。 a.數(shù)學抽象:函數(shù)增長快慢的認識;b.邏輯推理:由特殊到一般的推理;
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質》 是高中數(shù)學在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質,都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數(shù)學提供了更多角度的分析方法。培養(yǎng)和發(fā)展學生邏輯推理、數(shù)學直觀、數(shù)學抽象、和數(shù)學建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質;能利用對數(shù)函數(shù)的圖像與性質來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質,對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內部的的聯(lián)系。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;滲透類比等基本數(shù)學思想方法。
可以通過下面的步驟計算一組n個數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項與第i+1項的平均數(shù)。我們在初中學過的中位數(shù),相當于是第50百分位數(shù)。在實際應用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計樹人中學高一年級女生第25,50,75百分位數(shù)。
本節(jié)通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.能利用已知函數(shù)模型求解實際問題.2.能自建確定性函數(shù)模型解決實際問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:建立函數(shù)模型,把實際應用問題轉化為數(shù)學問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學運算:解答數(shù)學問題,求得結果;4.數(shù)據(jù)分析:把數(shù)學結果轉譯成具體問題的結論,做出解答;5.數(shù)學建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.重點:利用函數(shù)模型解決實際問題;難點:數(shù)模型的構造與對數(shù)據(jù)的處理.
本節(jié)課在已學冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的增長方式存在很大差異.事實上,這種差異正是不同類型現(xiàn)實問題具有不同增長規(guī)律的反應.而本節(jié)課重在研究不同函數(shù)增長的差異.課程目標1.掌握常見增長函數(shù)的定義、圖象、性質,并體會其增長的快慢.2.理解直線上升、對數(shù)增長、指數(shù)爆炸的含義以及三種函數(shù)模型的性質的比較,培養(yǎng)數(shù)學建模和數(shù)學運算等核心素養(yǎng).數(shù)學學科素養(yǎng)1.數(shù)學抽象:常見增長函數(shù)的定義、圖象、性質;2.邏輯推理:三種函數(shù)的增長速度比較;3.數(shù)學運算:由函數(shù)圖像求函數(shù)解析式;4.數(shù)據(jù)分析:由圖象判斷指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù);5.數(shù)學建模:通過由抽象到具體,由具體到一般的數(shù)形結合思想總結函數(shù)性質.重點:比較函數(shù)值得大?。浑y點:幾種增長函數(shù)模型的應用.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。
對數(shù)函數(shù)與指數(shù)函數(shù)是相通的,本節(jié)在已經(jīng)學習指數(shù)函數(shù)的基礎上通過實例總結歸納對數(shù)函數(shù)的概念,通過函數(shù)的形式與特征解決一些與對數(shù)函數(shù)有關的問題.課程目標1、通過實際問題了解對數(shù)函數(shù)的實際背景;2、掌握對數(shù)函數(shù)的概念,并會判斷一些函數(shù)是否是對數(shù)函數(shù). 數(shù)學學科素養(yǎng)1.數(shù)學抽象:對數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學運算:利用對數(shù)函數(shù)的概念求參數(shù);4.數(shù)學建模:通過由抽象到具體,由具體到一般的思想總結對數(shù)函數(shù)概念.重點:理解對數(shù)函數(shù)的概念和意義;難點:理解對數(shù)函數(shù)的概念.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入我們已經(jīng)研究了死亡生物體內碳14的含量y隨死亡時間x的變化而衰減的規(guī)律.反過來,已知死亡生物體內碳14的含量,如何得知死亡了多長時間呢?進一步地,死亡時間t是碳14的含量y的函數(shù)嗎?
本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修一》(人教A版)第三章《函數(shù)的概念與性質》,本節(jié)課是第2課時,本節(jié)課主要學習函數(shù)的三種表示方法及其簡單應用,進一步加深對函數(shù)概念的理解。課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結合得到更充分的表現(xiàn),使學生通過函數(shù)的學習更好地體會數(shù)形結合這種重要的數(shù)學思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.課程目標 學科素養(yǎng)A.在實際情景中,會根據(jù)不同的需要選擇恰當?shù)姆椒ǎń馕鍪椒?、圖象法、列表法)表示函數(shù);B.了解簡單的分段函數(shù),并能簡單地應用;1.數(shù)學抽象:函數(shù)解析法及能由條件求函數(shù)的解析式;2.邏輯推理:求函數(shù)的解析式;