四、速度和速率學生閱讀教材第18頁相應部分的知識點,讓學生總結.生:速度既有大小,又有方向,是矢量,速度的大小叫速率,教師引導學生看教材第18頁圖1.3—2.觀察汽車的速度計,討論后說出你從表盤上獲取的有用信息。生:汽車的速率.指針指在相應數(shù)字的瞬間,就表示汽車在那一瞬時的速率是那個值.生:還可以從表盤上直接讀出公里里程.師:日常生活中的“速度”有時指速度,也有時指速率,要看實際的物理情景。[討論與交流]甲、乙兩位同學用不同的時間圍繞操場跑了一圈,都回到了出發(fā)點,他們的平均速度相同嗎?怎樣比較他們運動的快慢?學生討論,體驗平均速度的缺陷,引入平均速率。生1:位移都是零,平均速度等于位移跟發(fā)生這段位移所用時間的比值,所以他們的平均速度都是零。生2:即使一位同學站在原地不跑,他的平均速度也是零啊,可我們運動會上不是這樣比快慢的,如果這樣,那多不公平啊?
1.加速度與力的關系:實驗的基本思路是保持物體的質量不變,測量物體在不同的力的作用下的加速度,分析加速度與力的關系。有了實驗的基本思路,接下去我們就要準備實驗器材,以及為記錄實驗數(shù)據(jù)而設計一個表格。為了更直觀地判斷加速度與力的數(shù)量關系,我們以 為縱坐標、 為橫坐標建立坐標系,根據(jù)各組數(shù)據(jù)在坐標系中描點。如果這些點在一條過原點的直線上,說明 與 成正比,如果不是這樣,則需進一步分析。2.加速度與質量的關系:實驗的基本思路是保持物體所受力不變,測量不同質量的物體在該力作用下的加速度,分析加速度與質量的關系。有了實驗的基本思路,接下去我們就要準備實驗器材,以及為記錄實驗數(shù)據(jù)而設計一個表格。為了更直觀地判斷加速度與質量的數(shù)量關系,我們以 為縱坐標、 為橫坐標建立坐標系,根據(jù)各組數(shù)據(jù)在坐標系中描點,根據(jù)擬合的曲線形狀,初步判斷 與 的關系是反比例函數(shù)。再把 圖像改畫為 圖像,如果是一條過原點的斜直線,說明自己的猜測是否正確。
【學習內容分析】在行星運動規(guī)律與萬有引力定律兩節(jié)內容之間安排本節(jié)內容,是為了更突出發(fā)現(xiàn)萬有引力定律的這個科學過程。如果說上一節(jié)內容是從運動學角度描述行星運動的話,那么,本節(jié)內容是從動力學角度來研究行星運動的,研究過程是依據(jù)已有規(guī)律進行的演繹推理過程。教科書在尊重歷史事實的前提下,通過一些邏輯思維的鋪墊,讓學生以自己現(xiàn)有的知識基礎身于歷史的背景下,經(jīng)歷一次“發(fā)現(xiàn)”萬有引力的過程,因此體驗物理學研究問題的方法就成為主要的教學目標?!緦W情分析】在學太陽對行星的引力之前,學生已經(jīng)對力、重力、向心力、加速度、重力加速度、向心加速度等概念有了較好的理解,并且掌握自由落體運動和圓周運動等運動規(guī)律,能熟練運用牛頓運動定律解決動力學問題。已經(jīng)完全具備深入探究和學習萬有引力定律的起點能力。所以在推導太陽與行星運動規(guī)律時,教師可以要求學生自主地運用原有的知識進行推導,并要求說明每一步推理的理論依據(jù)是什么,教師僅在難點問題上做適當?shù)狞c撥。
【探究學習】引入新課教師活動:自從17世紀以來,以牛頓定律為基礎的經(jīng)典力學不斷發(fā)展,取得了巨大的成就,經(jīng)典力學在科學研究和生產(chǎn)技術中有了廣泛的應用,從而證明了牛頓運動定律的正確性。但是,經(jīng)典力學也不是萬能的,向其它科學一樣,它也有一定的適用范圍,有自己的局限性。那么經(jīng)典力學在什么范圍內適用呢?有怎樣的局限性呢?這節(jié)課我們就來了解這方面的知識。進行新課教師活動:請同學們閱讀課文,閱讀時考慮下列問題[用投影片出示]:1、經(jīng)典力學取得了哪些輝煌的成就?舉例說明。2、經(jīng)典力學在哪些領域不能適用?能說出為什么嗎?舉例說明。3、經(jīng)典力學的適用范圍是什么?自己概括一下。4、相對論和量子力學的出現(xiàn)是否否定了牛頓的經(jīng)典力學?應該怎樣認識?5、怎樣理解英國劇作家蕭伯納的話“科學總是從正確走向錯誤”?學生活動:閱讀教材,并思考上面的問題。分組討論,代表發(fā)言。點評:讓學生通過自主閱讀獲取信息,培養(yǎng)學生閱讀理解能力,同時培養(yǎng)學生良好的自學習慣。
“做功的過程就是能量轉化過程”,這是本章教學中的一條主線。對于一種勢能,就一定對應于相應的力做功。類比研究重力勢能是從分析重力做功入手的,研究彈簧的彈性勢能則應從彈簧的彈力做功入手。然而彈簧的彈力是一個變力,如何研究變力做功是本節(jié)的一個難點,也是重點。首先,要引導學生通過類比重力做功和重力勢能的關系得出彈簧的彈力做功和彈簧的彈性勢能的關系。其次,通過合理的猜想與假設得出彈簧的彈力做功與哪些物理量有關。最后,類比勻變速直線運動求位移的方法,進行知識遷移,利用微元法的思想得到彈簧彈力做功的表達式,逐步把微分和積分的思想滲透到學生的思維中。本節(jié)課通過游戲引入課題,通過生活中拉弓射箭、撐桿跳高和彈跳蛙等玩具以及各種彈簧等實例來創(chuàng)設情景,提出問題。給學生感性認識,引起學生的好奇心;讓學生對彈簧彈力做功的影響因素進行猜想和假設,提出合理的推測,激發(fā)學生的探索心理,構思實驗,為定性探究打下基礎。然后,引導學生通過類比重力做功與重力勢能的關系得出彈簧彈性勢能與彈簧彈力做功的關系。
說明:“倍增法”是一種重要的物理方法,歷史上庫侖在研究電荷間的相互作用力時曾用過此法,但學生在此前的物理學習中可能未曾遇到類似例子,因此引導學生通過交流,領會“倍增法”的妙處,這是本節(jié)課的一個要點.可用體育鍛煉中的“拉力器”來類比。(2)該方案消除摩擦力影響的方法:所用的消除方法與實驗方案2一樣。也可使用氣墊導軌代替木板,以更好地消除摩擦影響。(3)小車速度的確定方法:①確定打出來的點大致呈現(xiàn)什么規(guī)律:先密后疏(變加速),再均勻分布(勻速);②應研究小車在哪個時刻的速度:在橡皮筋剛恢復原長時小車的瞬時速度,即紙帶上的點剛開始呈現(xiàn)均勻分布時的速度;③應如何取紙帶上的點距以確定速度:由于實驗器材和每次操作的分散性,尤其是橡皮筋不可能長度、粗細完全一致,使得每次改變橡皮筋的條數(shù)后,紙帶上反映小車勻速運動的點數(shù)和點的位置,不一定都在事先的設定點(即用一條橡皮筋拉小車,橡皮筋剛好恢復原長時紙帶上的點)處。
知識與技能1.知道地心說和日心說的基本內容.2.知道所有行星繞太陽運動的軌道都是橢圓,太陽處在橢圓的一個焦點上.3.知道所有行星的軌道的半長軸的三次方跟它的公轉周期的二次方的比值都相等,且這個比值與行星的質量無關,但與太陽的質量有關.4.理解人們對行星運動的認識過程是漫長復雜的,真理是來之不易的.過程與方法通過托勒密、哥白尼、第谷·布拉赫、開普勒等幾位科學家對行星運動的不同認識,了解人類認識事物本質的曲折性并加深對行星運動的理解.情感、態(tài)度與價值觀1.澄清對天體運動裨秘、模糊的認識,掌握人類認識自然規(guī)律的科學方法.2.感悟科學是人類進步不竭的動力.教學重點理解和掌握開普勒行星運動定律,認識行星的運動.學好本節(jié)有利于對宇宙中行星的運動規(guī)律的認識,掌握人類認識自然規(guī)律的科學方法,并有利于對人造衛(wèi)星的學習.
本節(jié)課是在學習了三角函數(shù)圖象和性質的前提下來學習三角函數(shù)模型的簡單應用,進一步突出函數(shù)來源于生活應用于生活的思想,讓學生體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學“建模”思想,從而培養(yǎng)學生的創(chuàng)新精神和實踐能力.課程目標1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會用三角函數(shù)模型解決一些簡單的實際問題.2.實際問題抽象為三角函數(shù)模型. 數(shù)學學科素養(yǎng)1.邏輯抽象:實際問題抽象為三角函數(shù)模型問題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實際問題中抽取基本的數(shù)學關系來建立數(shù)學模型; 3.數(shù)學運算:實際問題求解; 4.數(shù)學建模:體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學建模思想,提高學生的建模、分析問題、數(shù)形結合、抽象概括等能力.
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質》 是高中數(shù)學在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質,都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數(shù)學提供了更多角度的分析方法。培養(yǎng)和發(fā)展學生邏輯推理、數(shù)學直觀、數(shù)學抽象、和數(shù)學建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質;能利用對數(shù)函數(shù)的圖像與性質來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質,對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內部的的聯(lián)系。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;滲透類比等基本數(shù)學思想方法。
本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修一》(人教A版)第三章《函數(shù)的概念與性質》,本節(jié)課是第2課時,本節(jié)課主要學習函數(shù)的三種表示方法及其簡單應用,進一步加深對函數(shù)概念的理解。課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結合得到更充分的表現(xiàn),使學生通過函數(shù)的學習更好地體會數(shù)形結合這種重要的數(shù)學思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.課程目標 學科素養(yǎng)A.在實際情景中,會根據(jù)不同的需要選擇恰當?shù)姆椒ǎń馕鍪椒?、圖象法、列表法)表示函數(shù);B.了解簡單的分段函數(shù),并能簡單地應用;1.數(shù)學抽象:函數(shù)解析法及能由條件求函數(shù)的解析式;2.邏輯推理:求函數(shù)的解析式;
課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結合得到更充分的表現(xiàn),使學生通過函數(shù)的學習更好地體會數(shù)形結合這種重要的數(shù)學思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.在研究圖象時,又要注意代數(shù)刻畫以求思考和表述的精確性.課本將映射作為函數(shù)的一種推廣,這與傳統(tǒng)的處理方式有了邏輯順序上的變化.這樣處理,主要是想較好地銜接初中的學習,讓學生將更多的精力集中理解函數(shù)的概念,同時,也體現(xiàn)了從特殊到一般的思維過程.課程目標1、明確函數(shù)的三種表示方法;2、在實際情境中,會根據(jù)不同的需要選擇恰當?shù)姆椒ū硎竞瘮?shù);3、通過具體實例,了解簡單的分段函數(shù),并能簡單應用.
本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》的第五章的4.5.3函數(shù)模型的應用。函數(shù)模型及其應用是中學重要內容之一,又是數(shù)學與生活實踐相互銜接的樞紐,特別在應用意識日益加深的今天,函數(shù)模型的應用實質是揭示了客觀世界中量的相互依存有互有制約的關系,因而函數(shù)模型的應用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學生數(shù)學建模、數(shù)學直觀、數(shù)學抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內容的學習,使學生認識函數(shù)模型的作用,提高學生數(shù)學建模,數(shù)據(jù)分析的能力. a.數(shù)學抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學運算:運用函數(shù)模型解決實際問題;
本節(jié)是新人教A版高中數(shù)學必修1第1章第1節(jié)第3部分的內容。在此之前,學生已學習了集合的含義以及集合與集合之間的基本關系,這為學習本節(jié)內容打下了基礎。本節(jié)內容主要介紹集合的基本運算一并集、交集、補集。是對集合基木知識的深入研究。在此,通過適當?shù)膯栴}情境,使學生感受、認識并掌握集合的三種基本運算。本節(jié)內容是函數(shù)、方程、不等式的基礎,在教材中起著承上啟下的作用。本節(jié)內容是高中數(shù)學的主要內容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點。A.理解兩個集合的并集與交集的含義,會求簡單集合的交、并運算;B.理解補集的含義,會求給定子集的補集;C.能使用 圖表示集合的關系及運算。 1.數(shù)學抽象:集合交集、并集、補集的含義;2.數(shù)學運算:集合的運算;3.直觀想象:用 圖、數(shù)軸表示集合的關系及運算。
集合的基本運算是人教版普通高中課程標準實驗教科書,數(shù)學必修1第一章第三節(jié)的內容. 在此之前,學生已學習了集合的含義以及集合與集合之間的基本關系,這為學習本節(jié)內容打下了基礎. 本節(jié)內容是函數(shù)、方程、不等式的基礎,在教材中起著承上啟下的作用. 本節(jié)內容是高中數(shù)學的主要內容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點.課程目標1. 理解兩個集合的并集與交集的含義,能求兩個集合的并集與交集;2. 理解全集和補集的含義,能求給定集合的補集; 3. 能使用Venn圖表達集合的基本關系與基本運算.數(shù)學學科素養(yǎng)1.數(shù)學抽象:并集、交集、全集、補集含義的理解;2.邏輯推理:并集、交集及補集的性質的推導;3.數(shù)學運算:求 兩個集合的并集、交集及補集,已知并集、交集及補集的性質求參數(shù)(參數(shù)的范圍);4.數(shù)據(jù)分析:通過并集、交集及補集的性質列不等式組,此過程中重點關注端點是否含“=”及?問題;
本節(jié)內容來自人教版高中數(shù)學必修一第一章第一節(jié)集合第二課時的內容。集合論是現(xiàn)代數(shù)學的一個重要基礎,是一個具有獨特地位的數(shù)學分支。高中數(shù)學課程是將集合作為一種語言來學習,在這里它是作為刻畫函數(shù)概念的基礎知識和必備工具。本小節(jié)內容是在學習了集合的含義、集合的表示方法以及元素與集合的屬于關系的基礎上,進一步學習集合與集合之間的關系,同時也是下一節(jié)學習集合間的基本運算的基礎,因此本小節(jié)起著承上啟下的關鍵作用.通過本節(jié)內容的學習,可以進一步幫助學生利用集合語言進行交流的能力,幫助學生養(yǎng)成自主學習、合作交流、歸納總結的學習習慣,培養(yǎng)學生從具體到抽象、從一般到特殊的數(shù)學思維能力,通過Venn圖理解抽象概念,培養(yǎng)學生數(shù)形結合思想。
第一節(jié)通過研究集合中元素的特點研究了元素與集合之間的關系及集合的表示方法,而本節(jié)重點通過研究元素得到兩個集合之間的關系,尤其學生學完兩個集合之間的關系后,一定讓學生明確元素與集合、集合與集合之間的區(qū)別。課程目標1. 了解集合之間包含與相等的含義,能識別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達集合間的關系,體會直觀圖示對理解抽象概念的作用。數(shù)學學科素養(yǎng)1.數(shù)學抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學運算:由集合間的關系求參數(shù)的范圍,常見包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過集合關系列不等式組, 此過程中重點關注端點是否含“=”及 問題;5.數(shù)學建模:用集合思想對實際生活中的對象進行判斷與歸類。
本節(jié)內容是學生學習了任意角和弧度制,任意角的三角函數(shù)后,安排的一節(jié)繼續(xù)深入學習內容,是求三角函數(shù)值、化簡三角函數(shù)式、證明三角恒等式的基本工具,是整個三角函數(shù)知識的基礎,在教材中起承上啟下的作用。同時,它體現(xiàn)的數(shù)學思想與方法在整個中學數(shù)學學習中起重要作用。課程目標1.理解并掌握同角三角函數(shù)基本關系式的推導及應用.2.會利用同角三角函數(shù)的基本關系式進行化簡、求值與恒等式證明.數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解同角三角函數(shù)基本關系式;2.邏輯推理: “sin α±cos α”同“sin αcos α”間的關系;3.數(shù)學運算:利用同角三角函數(shù)的基本關系式進行化簡、求值與恒等式證明重點:理解并掌握同角三角函數(shù)基本關系式的推導及應用; 難點:會利用同角三角函數(shù)的基本關系式進行化簡、求值與恒等式證明.
本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內容是正切函數(shù)的性質與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質. 課程目標1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準確歸納其性質并能簡單地應用.數(shù)學學科素養(yǎng)1.數(shù)學抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調區(qū)間;3.數(shù)學運算:利用性質求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學建模:讓學生借助數(shù)形結合的思想,通過圖像探究正切函數(shù)的性質. 重點:能夠利用正切函數(shù)圖象準確歸納其性質并能簡單地應用; 難點:掌握利用單位圓中正切函數(shù)定義得到其圖象.
指數(shù)函數(shù)與冪函數(shù)是相通的,本節(jié)在已經(jīng)學習冪函數(shù)的基礎上通過實例總結歸納指數(shù)函數(shù)的概念,通過函數(shù)的三個特征解決一些與函數(shù)概念有關的問題.課程目標1、通過實際問題了解指數(shù)函數(shù)的實際背景;2、理解指數(shù)函數(shù)的概念和意義.數(shù)學學科素養(yǎng)1.數(shù)學抽象:指數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學運算:利用指數(shù)函數(shù)的概念求參數(shù);4.數(shù)學建模:通過由抽象到具體,由具體到一般的思想總結指數(shù)函數(shù)概念.重點:理解指數(shù)函數(shù)的概念和意義;難點:理解指數(shù)函數(shù)的概念.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入在本章的開頭,問題(1)中時間 與GDP值中的 ,請問這兩個函數(shù)有什么共同特征.要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.
本節(jié)通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.能利用已知函數(shù)模型求解實際問題.2.能自建確定性函數(shù)模型解決實際問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:建立函數(shù)模型,把實際應用問題轉化為數(shù)學問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學運算:解答數(shù)學問題,求得結果;4.數(shù)據(jù)分析:把數(shù)學結果轉譯成具體問題的結論,做出解答;5.數(shù)學建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.重點:利用函數(shù)模型解決實際問題;難點:數(shù)模型的構造與對數(shù)據(jù)的處理.