8、應用公式,嘗試計算梯形面積(出示一個基本圖形讓學生計算)〈這一環(huán)節(jié)意在讓學生主動參與到數(shù)學活動中,親自去體驗,讓學生運用自己已有的知識,大膽提出假想,共同探討,互相驗證,更強烈地激發(fā)學生探究學習的興趣,更全面、更方便地揭示新舊知識之間的聯(lián)系。這種讓學生在活動中發(fā)現(xiàn)、活動中體驗、活動中發(fā)散、活動中發(fā)展的過程,真真正正地體現(xiàn)了以人的發(fā)展為本的教育理念?!担ㄈ?、深化鞏固1、學習例1(1)、借助教具演示,理解“橫截面”的含義。(2)、弄清渠口、渠底、渠深各是梯形的什么?(3)、學生嘗試計算橫截面積。〈鞏固新知是課堂教學中不可缺少的一個過程,這一環(huán)節(jié)是為了將學生的學習積極性再次推向高潮,能更好地運用公式計算梯形面積,從中培養(yǎng)了學生解決簡單實際問題的能力?!?/p>
活動三:認識正方體的特征,總結(jié)長方體、正方體的關(guān)系(1)學生用類比法學習正方體的特征,并揭示出長方體和正方體的內(nèi)在聯(lián)系,得出:正方體是特殊的長方體。(2)說說生活中哪些物體是長方體、正方體? 開放的學習方式,以學生的自主學習為中心,讓學生通過自身的發(fā)展嘗試總結(jié),驗證,實現(xiàn)知識的“再創(chuàng)造”。比較是認識事物的主要方法之一,特別在幾何體教學中,運用比較方法,加強形體間的聯(lián)系和區(qū)別,提高識別能力。同時滲透事物普遍聯(lián)系和發(fā)展變化的辯證唯物主義觀。聯(lián)系生活,體現(xiàn)數(shù)學來源于生活,又應用于生活的特點?;顒铀模簩W以致用智慧屋,包含判斷題、計算題等多種題型的練習,培養(yǎng)學生展開多向思維,是學生能夠從不同角度解決問題的基礎(chǔ)。這樣的練習題,側(cè)重于知識點的落實,鞏固新知。
正方體的體積=棱長×棱長×棱長用字母a表示棱長,V=a×a×a.也可以寫成a3讀作a的立方.表示3個a相乘.不要誤認為a與3相乘。寫a3時3寫在a的右上角要寫小些.所以正方體的體積公式一般寫成: V=a3(五)、鞏固練習、運用公式練習是數(shù)學中教學鞏固新知、形成技能、發(fā)展思維、提高學生分析問題、解決問題能力的有效手段,為了加強學生的理解,使學生能正確運用公式.我設(shè)計了多層次的練習。1、通過讓學生完成看圖求體積,這樣有助于學生理解長方體正方體的體積與它的長寬高的關(guān)系,記住長方體的體積計算公式.2、我對安排了四個判斷題,以加深學生對a的立方的理解和運用。3,解決實際問題,我安排了兩道題目的是讓學生所學新知識解決生活中的一些實際問題。
2、從正面初步感受成正比例量的特征發(fā)給學生學習卡,呈現(xiàn)給學生兩組成正比例的量,目的是讓學生從正面發(fā)現(xiàn)正比例的特征,通過觀察、自主探索與合作交流等方式初步建構(gòu)正比例的意義并做抽象歸納。3、在練習中繼續(xù)感受成正比例量的特征練習分兩個層次,首先呈現(xiàn)給學生簡單的成正比例和不成正比例的三組量進行比較,然后呈現(xiàn)一些易錯的數(shù)量關(guān)系進行判斷,目的是讓學生在比較中,逐步剝離無關(guān)因素,突出正比例的本質(zhì)特征,并形成正確的正比例的判定思路。(三)說學法在本節(jié)課中,我著重引導學生,在獨立思考的基礎(chǔ)上,學會小組合作交流。具體表現(xiàn)在學會思考,學會觀察,學會表達,學會思考。使學生有足夠的時間和空間經(jīng)歷觀察、猜測、推理等活動過程,并對學生進行激勵性的評價,讓學生樂于說,善于說。
這節(jié)課的教學內(nèi)容是在學生學習掌握了圓和圓柱的相關(guān)知識的基礎(chǔ)上而安排的。認識圓錐,首先要了解它的特征。因此教材把它安排在這一部分內(nèi)容的第一節(jié),為下面的學習做好鋪墊。由于圓柱與圓錐的知識是密切相關(guān)的,因而教材把圓錐的認識安排在圓柱的認識之后,為學習圓錐的特征以及體積起到了一個橋梁的作用。二、說學情我所教學班級的學生是山區(qū)的孩子,經(jīng)過前面的學習他們的主觀性和能動性已經(jīng)有較大的提高,能夠有意識地主動探索未知世界。同時,他們的思維能力、分析問題的意識和能力也有明顯的提高,也有一定的動手操作能力。但抽象邏輯思維在很大程度上仍然靠感性經(jīng)驗支持,加上他們生活在山區(qū),對新生事物的見識面相對較窄,所以在教學時適宜恰當?shù)剡\用遠程教育資源,既能創(chuàng)設(shè)教學情境,又能將抽象的知識直觀化,更加直觀地體驗感知圓錐的特征。
四、教學過程1.創(chuàng)設(shè)情境 導入課題同學們:課前,我讓大家在生活中尋找圓柱,你們找到了嗎?誰愿意來展示一下。李老師也找到一些圖片,我們一起來欣賞:(多媒體展示生活中的圓柱圖片)生活中的圓柱可真多呀!為什么要把它們要設(shè)計成圓柱形呢?學生可能會說:因為圓柱沒有棱角,很光滑,所以欄桿、柱子要設(shè)計成圓柱形;因為圓柱可以滾動,所以壓路機、刷墻滾子設(shè)計成圓柱形……同學們,你們說得很好,圓柱有這么廣泛的用途,今天讓我們進一步從數(shù)學的角度來認識圓柱。(板書“圓柱的認識”)2.自主學習 初步認識接下來,我讓學生結(jié)合自帶的圓柱自學教材第10—11頁上的內(nèi)容。指導學生學會看書,從書本上獲取知識是學習數(shù)學的重要方法。因此,在感性認識圓柱的基礎(chǔ)上,我讓學生通過自主閱讀獲取圓柱各部分的名稱。 同學們:通過自學,你們都獲取了哪些知識?請拿著手中的圓柱來說一說?
一、說教材“正比例和反比例的意義”這部分內(nèi)容著重使學生理解正反比例的意義。正、反比例關(guān)系是比較重要的一種數(shù)量關(guān)系,學生理解并掌握了這種數(shù)量關(guān)系,可以應用它解決一些簡單的正、反比例方面的實際問題。二、說教學目標1.使學生理解正、反比例的意義,能夠初步判斷兩種相關(guān)聯(lián)的量是否成比例,成什么比例.2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.三、說教學重點理解正反比例的意義,掌握正反比例的變化的規(guī)律.四、說教學難點理解正反比例的意義,掌握正反比例的變化的規(guī)律.五、說學情在教學了正比例知識后,大部分學生都明白了如何判斷兩個量是不是正比例,在做題時,學生出錯的可能性不大,主要在于語言表達的完整性和科學性上。可是一旦教授了反比例的知識之后,學生開始混淆兩者了!不知道是把兩個量相“乘”還是相“除”!這是由于學生對于“正”和 “反”的理解不夠到位。
(二)師生互動,驗證猜想活動二:學生自由探索,圓柱體積計算方法以小組為單位設(shè)計出一種自己學過的知識計算圓柱體積的方法,通過合作,學生想到的辦法可能有:①把橡皮泥捏成圓柱體,再捏成長方體,量出長方體的長、寬、高。算出長方體的體積,也就是圓柱的體積。②把圓柱形的杯子裝滿沙子,鋪平,然后把沙子倒入較大的長方體的盒子中,量出長方體盒子的長、寬及沙子的高,算出沙子的體積,也就是圓柱的體積。如果杯子的厚度忽略不計的話。杯子的容積就是杯子的體積。③把一個圓柱體放到裝有(正)長方體容器中,水會上升,上升的水的體積就是圓柱的體積。(這一活動的設(shè)計,是通過觀察力求讓學生體驗到我們在計算圓柱的體積時都是把圓柱的體積轉(zhuǎn)化為其他形體的體積來進行計算的。由此,也就可以驗證學生的猜想是否準確,但是為了不影響學生的求知欲,我設(shè)計了這樣一個問題:你能用這些方法來計算我們的學校門口這根圓柱形柱子的體積嗎?
(二)注重學法。堅持“發(fā)展為本”,促進學生個性發(fā)展,并在時間和空間諸方面為學生提供發(fā)展的充分條件,以培養(yǎng)學生的實踐能力、探索能力和創(chuàng)新精神為目標。在教學過程中,注意引導學生怎樣有序觀察、怎樣概括結(jié)論,通過一系列活動,培養(yǎng)學生動手、動口、動腦的能力,使學生的觀察能力、抽象概括能力逐步提高,教會學生學習。使學生通過自己的努力有所感受,有所感悟,有所發(fā)現(xiàn),有所創(chuàng)新。小學生學習的數(shù)學應該是生活中的數(shù)學,是學生“自己的數(shù)學”。讓學生在生活情境中“尋”數(shù)學,在實踐操作中“做”數(shù)學,在現(xiàn)實生活中“用”數(shù)學?!皩W以致用”是學習的出發(fā)點和歸宿點,也是學習數(shù)學的終結(jié)所在。讓學生感到數(shù)學的有趣和可學,我們還應注重將數(shù)學知識提升應用到生活中,提高學生處理問題的實際能力,讓學生真正做到會學習、會創(chuàng)造、會生活的一代新人,讓數(shù)學課堂真正成為學生活動的、創(chuàng)造的課堂。三、優(yōu)化程序,突出主體。
多年的小學教學經(jīng)驗告訴我:小學高年級的學生已有一定的自學能力,關(guān)鍵是看我們設(shè)置的情景和學生的生活是不是緊密聯(lián)系,是不是喚起了學生的已有表象,并不和使用多種媒體有絕對聯(lián)系。所以在學習例題中我引導學生自主探討,從中發(fā)現(xiàn)問題,提出問題,最后獨立解決問題,從而訓練學生數(shù)學語言表達能力,發(fā)展學生的創(chuàng)造性思維。⒋質(zhì)疑問難。㈣新知總結(jié)對上面所學知識,教師引導學生作一次歸納總結(jié),讓學生明確要求圓周長時,必須設(shè)法求得圓的直徑或半徑。這樣使學生對求圓周長有明確的認識,進一步深化重點。㈤新知運用國家教委加強與改進小學數(shù)學教學的意見中提出:基礎(chǔ)訓練是使學生融會貫通地掌握知識,形成熟練技能和發(fā)展智力的重要手段。所以在本節(jié)練習中我以基礎(chǔ)練習為主,適當補充了提高練習。
本節(jié)是新人教A版高中數(shù)學必修1第1章第1節(jié)第3部分的內(nèi)容。在此之前,學生已學習了集合的含義以及集合與集合之間的基本關(guān)系,這為學習本節(jié)內(nèi)容打下了基礎(chǔ)。本節(jié)內(nèi)容主要介紹集合的基本運算一并集、交集、補集。是對集合基木知識的深入研究。在此,通過適當?shù)膯栴}情境,使學生感受、認識并掌握集合的三種基本運算。本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用。本節(jié)內(nèi)容是高中數(shù)學的主要內(nèi)容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點。A.理解兩個集合的并集與交集的含義,會求簡單集合的交、并運算;B.理解補集的含義,會求給定子集的補集;C.能使用 圖表示集合的關(guān)系及運算。 1.數(shù)學抽象:集合交集、并集、補集的含義;2.數(shù)學運算:集合的運算;3.直觀想象:用 圖、數(shù)軸表示集合的關(guān)系及運算。
集合的基本運算是人教版普通高中課程標準實驗教科書,數(shù)學必修1第一章第三節(jié)的內(nèi)容. 在此之前,學生已學習了集合的含義以及集合與集合之間的基本關(guān)系,這為學習本節(jié)內(nèi)容打下了基礎(chǔ). 本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用. 本節(jié)內(nèi)容是高中數(shù)學的主要內(nèi)容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點.課程目標1. 理解兩個集合的并集與交集的含義,能求兩個集合的并集與交集;2. 理解全集和補集的含義,能求給定集合的補集; 3. 能使用Venn圖表達集合的基本關(guān)系與基本運算.數(shù)學學科素養(yǎng)1.數(shù)學抽象:并集、交集、全集、補集含義的理解;2.邏輯推理:并集、交集及補集的性質(zhì)的推導;3.數(shù)學運算:求 兩個集合的并集、交集及補集,已知并集、交集及補集的性質(zhì)求參數(shù)(參數(shù)的范圍);4.數(shù)據(jù)分析:通過并集、交集及補集的性質(zhì)列不等式組,此過程中重點關(guān)注端點是否含“=”及?問題;
四、小結(jié)1.知識:如何采用兩角和或差的正余弦公式進行合角,借助三角函數(shù)的相關(guān)性質(zhì)求值.其中三角函數(shù)最值問題是對三角函數(shù)的概念、圖像和性質(zhì),以及誘導公式、同角三角函數(shù)基本關(guān)系、和(差)角公式的綜合應用,也是函數(shù)思想的具體體現(xiàn). 如何科學的把實際問題轉(zhuǎn)化成數(shù)學問題,如何選擇自變量建立數(shù)學關(guān)系式;求解三角函數(shù)在某一區(qū)間的最值問題.2.思想:本節(jié)課通過由特殊到一般方式把關(guān)系式 化成 的形式,可以很好地培養(yǎng)學生探究、歸納、類比的能力. 通過探究如何選擇自變量建立數(shù)學關(guān)系式,可以很好地培養(yǎng)學生分析問題、解決問題的能力和應用意識,進一步培養(yǎng)學生的建模意識.五、作業(yè)1. 課時練 2. 預習下節(jié)課內(nèi)容學生根據(jù)課堂學習,自主總結(jié)知識要點,及運用的思想方法。注意總結(jié)自己在學習中的易錯點;
第一節(jié)通過研究集合中元素的特點研究了元素與集合之間的關(guān)系及集合的表示方法,而本節(jié)重點通過研究元素得到兩個集合之間的關(guān)系,尤其學生學完兩個集合之間的關(guān)系后,一定讓學生明確元素與集合、集合與集合之間的區(qū)別。課程目標1. 了解集合之間包含與相等的含義,能識別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達集合間的關(guān)系,體會直觀圖示對理解抽象概念的作用。數(shù)學學科素養(yǎng)1.數(shù)學抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學運算:由集合間的關(guān)系求參數(shù)的范圍,常見包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過集合關(guān)系列不等式組, 此過程中重點關(guān)注端點是否含“=”及 問題;5.數(shù)學建模:用集合思想對實際生活中的對象進行判斷與歸類。
它位于三角函數(shù)與數(shù)學變換的結(jié)合點上,能較好反應三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進行求值、化簡、證明,雖然學生已經(jīng)具備了一定的推理、運算能力,但在數(shù)學的應用意識與應用能力方面尚需進一步培養(yǎng).課程目標1.能用二倍角公式推導出半角公式,體會三角恒等變換的基本思想方法,以及進行簡單的應用. 2.了解三角恒等變換的特點、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進行三角函數(shù)式的化簡、求值以及證明,進而進行簡單的應用. 數(shù)學學科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學運算:三角函數(shù)式的求值.
新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數(shù)學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內(nèi)不經(jīng)過交點的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
問題導入:問題一:試驗1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因為兩枚硬幣分別拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計算試驗1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗2:一個袋子中裝有標號分別是1,2,3,4的4個球,除標號外沒有其他差異。
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學生回顧本節(jié)課知識點,教師補充。 讓學生掌握本節(jié)課知識點,并能夠靈活運用。
新知探究:向量的減法運算定義問題四:你能根據(jù)實數(shù)的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進行:減去一個向量相當于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質(zhì)上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )