(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補,兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯角相等,同旁內(nèi)角互補)來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設(shè)計平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補,兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
意圖:課后作業(yè)設(shè)計包括了三個層面:作業(yè)1是為了鞏固基礎(chǔ)知識而設(shè)計;作業(yè)2是為了擴展學(xué)生的知識面;作業(yè)3是為了拓廣知識,進行課后探究而設(shè)計,通過此題可讓學(xué)生進一步認識勾股定理的前提條件.效果:學(xué)生進一步加強對本課知識的理解和掌握.教學(xué)設(shè)計反思(一)設(shè)計理念依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的整個過程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進行主動學(xué)習(xí).教師只在學(xué)生遇到困難時,進行引導(dǎo)或組織學(xué)生通過討論來突破難點.(二)突出重點、突破難點的策略為了讓學(xué)生在學(xué)習(xí)過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過幾個探究活動引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學(xué)生通過觀察圖形,計算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進而得到勾股定理.
意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學(xué)生的愛國熱情;(2)學(xué)生加強了對數(shù)學(xué)史的了解,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣;(3)通過讓部分學(xué)生搜集材料,展示材料,既讓學(xué)生得到充分的鍛煉,同時也活躍了課堂氣氛.效果:學(xué)生熱情高漲,對勾股定理的歷史充滿了濃厚的興趣,同時也為中國古代數(shù)學(xué)的成就感到自豪.也有同學(xué)提出:當(dāng)代中國數(shù)學(xué)成就不夠強,還應(yīng)發(fā)奮努力.有同學(xué)能意識這一點,這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問:通過這節(jié)課的學(xué)習(xí),你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識要點,數(shù)形結(jié)合的思想方法;(2)教師了解學(xué)生對本節(jié)課的感受并進行總結(jié);(3)培養(yǎng)學(xué)生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動學(xué)生學(xué)習(xí)的積極性,所以學(xué)生談的收獲很多,包括利用拼圖驗證勾股定理中蘊含的數(shù)形結(jié)合思想,學(xué)生對勾股定理的歷史的感悟及對勾股定理應(yīng)用的認識等等.
解析:從各點的位置可以發(fā)現(xiàn)A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細觀察每四個點的橫、縱坐標(biāo),發(fā)現(xiàn)存在著一定規(guī)律性.因為2015=503×4+3,所以點A2015在第二象限,縱坐標(biāo)和橫坐標(biāo)互為相反數(shù),所以A2015的坐標(biāo)為(-504,504).故填(-504,504).方法總結(jié):解決此類題常用的方法是通過對幾種特殊情況的研究,歸納總結(jié)出一般規(guī)律,再根據(jù)一般規(guī)律探究特殊情況.三、板書設(shè)計軸對稱與坐標(biāo)變化關(guān)于坐標(biāo)軸對稱作圖——軸對稱變換通過本課時的學(xué)習(xí),學(xué)生經(jīng)歷圖形坐標(biāo)變化與圖形的軸對稱之間的關(guān)系的探索過程,掌握空間與圖形的基礎(chǔ)知識和基本作圖技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.教學(xué)過程中學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動,積極交流合作,體驗數(shù)學(xué)活動的樂趣.
內(nèi)容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復(fù)習(xí)公理:兩點之間線段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情.效果:從學(xué)生熟悉的生活場景引入,提出問題,學(xué)生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎(chǔ).第二環(huán)節(jié):合作探究內(nèi)容:學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線.讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法.
方法總結(jié):平行線與角的大小關(guān)系、直線的位置關(guān)系是緊密聯(lián)系在一起的.由兩直線平行的位置關(guān)系得到兩個相關(guān)角的數(shù)量關(guān)系,從而得到相應(yīng)角的度數(shù).探究點四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關(guān)鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結(jié)論.已知AB∥CD,但沒有一條直線既與AB相交,又與CD相交,所以需要作輔助線構(gòu)造同位角、內(nèi)錯角或同旁內(nèi)角,但是又要保證原有條件和結(jié)論的完整性,所以需要過點E作AB的平行線.證明:如圖所示,過點E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內(nèi)角互補).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內(nèi)角互補).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質(zhì)),即∠B+∠BED+∠D=360°.方法總結(jié):過一點作一條直線或線段的平行線是我們常作的輔助線.
方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時,要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關(guān)系.
解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關(guān)系,可求得∠AOB與∠COD的度數(shù).通過計算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結(jié):檢驗數(shù)學(xué)結(jié)論具體經(jīng)歷的過程是:觀察、度量、實驗→猜想歸納→結(jié)論→推理→正確結(jié)論.三、板書設(shè)計為什么,要證明)推理的意義:數(shù)學(xué)結(jié)論必須經(jīng)過嚴(yán)格的論證檢驗數(shù)學(xué)結(jié)論的常用方法實驗驗證舉出反例推理證明經(jīng)歷觀察、驗證、歸納等過程,使學(xué)生對由這些方法得到的結(jié)論產(chǎn)生懷疑,以此激發(fā)學(xué)生的好奇心,從而認識證明的必要性,培養(yǎng)學(xué)生的推理意識,了解檢驗數(shù)學(xué)結(jié)論的常用方法:實驗驗證、舉出反例、推理論證等.
探究點二:勾股定理的簡單運用如圖,高速公路的同側(cè)有A,B兩個村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現(xiàn)要在高速公路上A1、B1之間設(shè)一個出口P,使A,B兩個村莊到P的距離之和最短,求這個最短距離和.解析:運用“兩點之間線段最短”先確定出P點在A1B1上的位置,再利用勾股定理求出AP+BP的長.解:作點B關(guān)于MN的對稱點B′,連接AB′,交A1B1于P點,連BP.則AP+BP=AP+PB′=AB′,易知P點即為到點A,B距離之和最短的點.過點A作AE⊥BB′于點E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結(jié):解這類題的關(guān)鍵在于運用幾何知識正確找到符合條件的P點的位置,會構(gòu)造Rt△AB′E.三、板書設(shè)計勾股定理驗證拼圖法面積法簡單應(yīng)用通過拼圖驗證勾股定理并體會其中數(shù)形結(jié)合的思想;應(yīng)用勾股定理解決一些實際問題,學(xué)會勾股定理的應(yīng)用并逐步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力,為后面的學(xué)習(xí)打下基礎(chǔ).
8.一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0)則光線從A點到B點經(jīng)過的路線長是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(- x , y)2、關(guān)于x軸對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(x , - y)3、關(guān)于原點對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習(xí)題3.5 1,2,3四、 教學(xué)反思通過“坐標(biāo)與軸對稱”,經(jīng)歷圖形坐標(biāo)變化與圖形的軸對稱之間的關(guān)系的探索過程, 掌握空間與圖形的基礎(chǔ)知識和基本技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲,學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動;積極交流合作,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造。教學(xué)中務(wù)必給學(xué)生創(chuàng)造自主學(xué)習(xí)與合作交流的機會,留給學(xué)生充足的動手機會和思考空間,教師不要急于下結(jié)論。事先一定要準(zhǔn)備好坐標(biāo)紙等,提高課堂效率。
內(nèi)容:分式方程的解法及應(yīng)用——初三中考數(shù)學(xué)第一輪復(fù)習(xí)學(xué)習(xí)目標(biāo):1、熟練利用去分母化分式方程為整式方程2、熟練利用分式方程的解法解決含參數(shù)的分式方程的問題重點:分式方程的解法(尤其要理解“驗”的重要性)難點:含參數(shù)的分式方程問題預(yù)習(xí)內(nèi)容:1、觀看《分式方程的解法》《含參數(shù)分式方程增根問題》《解含參分式方程》視頻2、完成預(yù)習(xí)檢測
新知探究前面我們研究了兩類變化率問題:一類是物理學(xué)中的問題,涉及平均速度和瞬時速度;另一類是幾何學(xué)中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學(xué)科領(lǐng)域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為__________),記作f ′(x0)或________,即
【教學(xué)目標(biāo)】知識與技能目標(biāo):掌握對數(shù)函數(shù)的圖像及性質(zhì);過程與方法目標(biāo):通過圖像特征的觀察,理解對數(shù)函數(shù)的性質(zhì),并從中體會從具體到一般及數(shù)形結(jié)合的方法;情感態(tài)度與價值觀目標(biāo):在教學(xué)活動中培養(yǎng)學(xué)生的學(xué)習(xí)興趣,感受數(shù)學(xué)知識的應(yīng)用價值,體驗知識之間的內(nèi)在邏輯之美。【教學(xué)重點】對數(shù)函數(shù)的圖像及性質(zhì)?!窘虒W(xué)難點】對數(shù)函數(shù)性質(zhì)與應(yīng)用。
二、對數(shù)函數(shù)的概念1. 計算對數(shù)的值 N1248x 思路(引入對數(shù)的概念):讓學(xué)生依次計算、、、、、、,體會每一個真數(shù)都能找到唯一一個對數(shù)與之對應(yīng),這就形成了一個函數(shù),我們稱這個函數(shù)為對數(shù)函數(shù)。
活動目的:通過兩個圖案設(shè)計,一個是讓學(xué)生獨立思考,借助于已經(jīng)學(xué)習(xí)的用尺規(guī)作線段和角來完成,對本節(jié)課的知識進一步鞏固應(yīng)用;另一個是讓學(xué)生根據(jù)作圖步驟借助于尺規(guī)完成圖案,進一步培養(yǎng)學(xué)生幾何語言表達能力,并積累尺規(guī)作圖的活動經(jīng)驗?;顒幼⒁馐马棧焊鶕?jù)課堂時間安排,可靈活進行處理,既可以作為本節(jié)課的實際應(yīng)用,也可以作為課下的聯(lián)系拓廣,從而使得不同層次的學(xué)生都學(xué)到有價值的數(shù)學(xué)。四、 教學(xué)設(shè)計反思1.利用現(xiàn)實情景引入新課,既能體現(xiàn)數(shù)學(xué)知識與客觀世界的良好結(jié)合,又能喚起學(xué)生的求知欲望和探求意識。而在了解基礎(chǔ)知識以后,將其進行一定的升華,也能使學(xué)生明白學(xué)以致用的道理、體會知識的漸進發(fā)展過程,增強思維能力的培養(yǎng)。同時,在整個探究過程中,怎樣團結(jié)協(xié)作、如何共同尋找解題的突破口,也是學(xué)生逐步提高的一個途徑。
(一)復(fù)習(xí)導(dǎo)入 1. 師:同學(xué)們,上節(jié)課我們學(xué)習(xí)了折扣,你會做下面的題嗎?(課件第2張)(1)五五折表示十分之(五點五),也就是(55)%。 (2)一件商品打九八折出售,就是按原價的(98%)出售。(3)一件上衣原價75元,現(xiàn)在打八折售出,現(xiàn)在買這件上衣需要(60)元。(4)現(xiàn)價=(原價)×(折扣)2.師:生活中的百分?jǐn)?shù)還有很多,比如說“成數(shù)”。例如:今年我省油菜籽比去年增產(chǎn)二成。這節(jié)課我們就來學(xué)習(xí)“成數(shù)”。(板書課題:成數(shù))(課件第3張)【設(shè)計意圖】 “折扣”與“成數(shù)”雖然運用不一樣,但解決方法大致相同,復(fù)習(xí)不僅可以起到鞏固作用,也能讓學(xué)生對新知的解決有一些鋪墊。(二)探究新知 1、探究成數(shù)的含義以及成數(shù)和百分?jǐn)?shù)的關(guān)系。(課件第4張)(1)農(nóng)業(yè)收成,經(jīng)常用成數(shù)來表示。你知道什么是成數(shù)嗎? 生1:成數(shù)表示一個數(shù)是另一個數(shù)的十分之幾,通稱“幾成”?!耙怀伞本褪鞘种?,改寫成百分?jǐn)?shù)是10%。(2)填一填。(課件第5張)“二成”就是(十分之二),改寫成百分?jǐn)?shù)是(20%);“三成五”就是(十分之三點五),改寫成百分?jǐn)?shù)是(35%)。“四成三”就是(十分之四點三),改寫成百分?jǐn)?shù)是(43%);“六成五”就是(十分之六點五),改寫成百分?jǐn)?shù)是(65%)。(3)把下面的成數(shù)改寫成百分?jǐn)?shù)。 (課件第6張)三成=(30)% 四成六=(46)% 九成九=(99)% 二成五=(25)% 一成二=(12)% 七成三=(73)%
(一)觀圖激趣、設(shè)疑導(dǎo)入 師:上一節(jié)我們已經(jīng)認識了比例,知道兩個比怎樣才能組成比例,下面請同學(xué)們判斷一下下面各組的比能否組成比例。(1)0.4∶和1.2∶2 (2)和生1:根據(jù)比例的意義,第(1)題,這兩個比的比值相等,都是0.6,所以(1)題的兩個比能組成比例。生2:我來回答第(2)題,我也利用比例的意義,求出=5,=6,這兩個比的比值不相等,所以第(2)題的兩個比不能組成比例。師:這兩名同學(xué)回答的真好,有理有據(jù),讓我們?yōu)樗麄兊谋憩F(xiàn)鼓掌!師:今天這節(jié)課,我們將共同來學(xué)習(xí)用另一種方法來判斷兩個比能否組成比例,同學(xué)們想知道是什么方法嗎?生:想知道。師:那就是比例的基本性質(zhì)(板書課題:比例的基本性質(zhì))。【設(shè)計意圖】復(fù)習(xí)學(xué)生已有的知識,喚醒學(xué)生已有學(xué)習(xí)經(jīng)驗,教師的提問吸引了學(xué)生的注意力,也引發(fā)學(xué)生的好奇心,為學(xué)習(xí)新知識開了一個好頭。
【教學(xué)過程】(一)觀圖激趣、設(shè)疑導(dǎo)入 出示課件的第一張幻燈片。1、成正比例的量有什么特征?2、正比例關(guān)系式。生1:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化。生2:兩種量中相對應(yīng)的兩個量的比值(商)一定。生3:=k(一定)。師:同學(xué)們非常棒!我們今天繼續(xù)學(xué)習(xí)兩種量的另外一種關(guān)系。 (板書:成反比例的量)【設(shè)計意圖】這種方法的導(dǎo)入,簡簡單單的一道練習(xí)題,把學(xué)生的注意力吸引到本節(jié)主要內(nèi)容上來,激起學(xué)生的好奇心,真的還有另外一種關(guān)系!我可得好好聽一聽。這樣在學(xué)習(xí)反比例時學(xué)生會始終保持高度的精神集中,有利于教師教學(xué)順利進行。(二)探究新知教學(xué)例2,探究反比例的意義,理解成反比例的量。1、出示PPT課件回答問題。杯子的底面積與水的高度的變化情況如下表。 杯子的底面積/cm²1015203060…水的高度/cm302015105…觀察上表,回答下面的問題。(1)表中有哪兩種量?(2)水的高度是怎樣隨著杯子底面積的大小變化而變化的?(3)相對應(yīng)的杯子的底面積與水的高度的乘積分別是多少?生1:表中有杯子的底面積和水的高度這兩種量。生2:從表中可以看出:水的高度隨著杯子的底面積的變大而不斷變小,這兩種量是相關(guān)聯(lián)的兩種量。生3:我來回答(3),相對應(yīng)的杯子的底面積與水的高度的乘積分別是:10×30=15×20=20×15=30×10=60×5=…=300。生4:乘積一定。師:底面積與高的乘積表示的是什么?生:水的體積。(板書)師:你會算出水的體積嗎?生:會。(學(xué)生計算,教師出示課件訂正)2、揭示反比例的意義。師:積是300,實際就是倒入杯子的水的體積。同學(xué)們能用式子表示出它們的關(guān)系嗎?生:它們的關(guān)系是:底面積×高=體積。師:同學(xué)們,我們用概括正比例意義時的方法來概括一下反比例的意義吧!生:像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的乘積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。(板書反比例的意義)3、用字母表示反比例關(guān)系:xy=k(一定)。(板書)4、牛刀小試。鍋爐房燒煤的天數(shù)與每天燒煤的噸數(shù)如下表: 每天燒煤的噸數(shù)/噸11.522.53燒煤的天數(shù)/天3020151210(1)表中有哪兩種量?它們是不是相關(guān)聯(lián)的量?(2)寫出幾組這兩種量中相對應(yīng)的兩個數(shù)的積,并比較大小,說一說這個積表示什么。(3)燒煤的天數(shù)與每天燒煤的噸數(shù)成反比例嗎?為什么?【參考答案】 (1)每天燒煤的噸數(shù)和燒煤的天數(shù),是相關(guān)聯(lián)的量?!?2)1×30=30 1.5×20=30 2×15=30 2.5×12=30 3×10=30 積相等,這個積表示這批煤的總噸數(shù)?!?3)成反比例,因為燒煤的天數(shù)與每天燒煤的噸數(shù)的積一定?!驹O(shè)計意圖】學(xué)生通過觀察、發(fā)現(xiàn)、概括經(jīng)歷了整個學(xué)習(xí)過程,逐步形成定向思維方式,為學(xué)會學(xué)習(xí)打好基礎(chǔ)。
◆學(xué)習(xí)內(nèi)容長方體和正方體的體積教科書第40——43頁例1、例2,第43頁“做一做”,以及練習(xí)七第3——8題?!魧W(xué)習(xí)目標(biāo)1. 掌握長方體和正方體的體積計算公式,學(xué)會計算長方體和正方體的體積。2. 培養(yǎng)實際操作能力,推理能力及運用知識解決實際問題的能力?!魧W(xué)習(xí)重點能正確計算長方體和正方體的體積。長方體和正方體體積的計算是形成體積的概念、掌握體積的計量單位和計算各種幾何形體體積的基礎(chǔ)?!魧W(xué)習(xí)難點理解長方體和正方體的體積計算公式的推導(dǎo)過程。體積公式的推導(dǎo)是建立在充分的感性經(jīng)驗的基礎(chǔ)上,溝通每行個數(shù)、行數(shù)、層數(shù)與長、寬、高之間的聯(lián)系,進而順理成章地推導(dǎo)出公式?!魧W(xué)習(xí)過程1. 實驗探索長方體的體積公式計量一個長方體的體積是多少,就是看這個長方體里含有多少個體積單位。但不是所有的物體都能切割成若干個小正方體。動手做試驗:用體積為1cm3小正方體擺成不同的長方體。將相關(guān)數(shù)據(jù)填入下表。
1.師要注意區(qū)別教學(xué)內(nèi)容是否適合進行小組合作探究。這種學(xué)習(xí)是否每節(jié)課都需要。學(xué)生的小組學(xué)習(xí)是否在走過場,或者說流于形式。教師要注意營造自由自在的學(xué)習(xí)氛圍,控制討論的局面,如討論中是否有人進行人身攻擊,是否有人壟斷發(fā)言權(quán)而有的人卻一言不發(fā),是否有人竊竊私語,教師要在巡視及參與中“察言觀色”,及時調(diào)控。2.教師要充分注意精心設(shè)計的問題。教師的教學(xué)設(shè)計是否合適,是做秀還是教學(xué)的需要。這不僅需要教師的認同,還需要課程的認同,學(xué)生的認同。因此,對于適合采用小組合作探究方式的教學(xué)內(nèi)容,我們一定要根據(jù)課程標(biāo)準(zhǔn)的三維目標(biāo)學(xué)生現(xiàn)有的認知程度和興趣以及本課要解決的問題和教學(xué)任務(wù)來精心設(shè)計問題。3.要注重小組合作探究的組織,進行適當(dāng)有效的指導(dǎo)。教師要轉(zhuǎn)換自己的角色,從傳授者變成指導(dǎo)者、參與者、監(jiān)控者和幫助者,并切實注意自身行為的方法和效果,及時進行調(diào)整。