解析:∵ab>0,根據(jù)“兩數(shù)相除,同號(hào)得正”可知,a、b同號(hào),又∵a+b<0,∴可以判斷a、b均為負(fù)數(shù).故選D.方法總結(jié):此題考查了有理數(shù)乘法和加法法則,將二者綜合考查是考試中常見(jiàn)的題型,此題的側(cè)重點(diǎn)在于考查學(xué)生的邏輯推理能力.讓學(xué)生深刻理解除法是乘法的逆運(yùn)算,對(duì)學(xué)好本節(jié)內(nèi)容有比較好的作用.教學(xué)設(shè)計(jì)可以采用課本的引例作為探究除法法則的過(guò)程.讓學(xué)生自己探索并總結(jié)除法法則,同時(shí)也讓學(xué)生對(duì)比乘法法則和除法法則,加深印象.并講清楚除法的兩種運(yùn)算方法:(1)在除式的項(xiàng)和數(shù)字不復(fù)雜的情況下直接運(yùn)用除法法則求解.(2)在多個(gè)有理數(shù)進(jìn)行除法運(yùn)算,或者是乘、除混合運(yùn)算時(shí)應(yīng)該把除法轉(zhuǎn)化為乘法,然后統(tǒng)一用乘法的運(yùn)算律解決問(wèn)題.
方法總結(jié):股票每天的漲跌都是在前一天的基礎(chǔ)上進(jìn)行的,不要理解為每天都是在67元的基礎(chǔ)上漲跌.另外熟記運(yùn)算法則并根據(jù)題意準(zhǔn)確列出算式也是解題的關(guān)鍵.三、板書(shū)設(shè)計(jì)加法法則(1)同號(hào)兩數(shù)相加,取與加數(shù)相同的符號(hào),把絕對(duì) 值相加.(2)異號(hào)兩數(shù)相加,取絕對(duì)值較大加數(shù)的符號(hào),并 用較大的絕對(duì)值減去較小的絕對(duì)值.(3)互為相反數(shù)的兩數(shù)相加得0.(4)一個(gè)數(shù)同0相加,仍得這個(gè)數(shù).本課時(shí)利用情境教學(xué)、解決問(wèn)題等方法進(jìn)行教學(xué),使學(xué)生在情境中提出問(wèn)題,并尋找解決問(wèn)題的途徑,因此不知不覺(jué)地進(jìn)入學(xué)習(xí)氛圍,把學(xué)生從被動(dòng)學(xué)習(xí)變?yōu)橹鲃?dòng)想學(xué).在本節(jié)教學(xué)中,要堅(jiān)持以學(xué)生為主體,教師為主導(dǎo),充分調(diào)動(dòng)學(xué)生的興趣和積極性,使他們最大限度地參與到課堂的活動(dòng)中.
1、掌握有理數(shù)混合運(yùn)算法則,并能進(jìn)行有理數(shù)的混合運(yùn)算的計(jì)算。2、經(jīng)歷“二十四”點(diǎn)游戲,培養(yǎng)學(xué)生的探究能力[教學(xué)重點(diǎn)]有理數(shù)混合運(yùn)算法則。[教學(xué)難點(diǎn)]培養(yǎng)探索思 維方式?!窘虒W(xué)過(guò)程】情境導(dǎo)入——有理數(shù)的混合運(yùn)算是指一個(gè)算式里含有加、減、乘、除、乘方的多種運(yùn)算.下面的算式里有哪幾種運(yùn)算?3+50÷22×( )-1.有理數(shù)混合運(yùn)算的運(yùn)算順序規(guī)定如下:1 先算乘方,再算乘除,最后算加減;2 同級(jí)運(yùn)算,按照從左至右的順序進(jìn)行;3 如果有括號(hào),就先算小括號(hào)里的,再算中括號(hào)里的,最后算大括號(hào)里的。 加法和減法叫做第一級(jí)運(yùn)算;乘法和除法叫做第二級(jí)運(yùn)算;乘方和開(kāi)方(今后將會(huì)學(xué)到)叫做第三級(jí)運(yùn)算。注意:可以應(yīng)用運(yùn)算律,適當(dāng)改變運(yùn)算順序,使運(yùn)算簡(jiǎn)便.合作探究——
師生共同歸納法則2、異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。生5:這兩天的庫(kù)存量合計(jì)增加了2噸。(+3)+(-1)=+2 或(+8)+(-6)=+2師:會(huì)不會(huì)出現(xiàn)和為零的情況?提示:可以聯(lián)系倉(cāng)庫(kù)進(jìn)出貨的具體情形。生6:如星期一倉(cāng)庫(kù)進(jìn)貨5噸,出貨5噸,則庫(kù)存量為零。(+5)+(-5)=0師生共同歸納法則3、互為相反數(shù)的兩個(gè)數(shù)相加得零。師:你能用加法法則來(lái)解釋法則3嗎?生7:可用異號(hào)兩數(shù)相加的法則。一般地還有:一個(gè)數(shù)同零相加,仍得這個(gè)數(shù)。小結(jié):運(yùn)算關(guān)鍵:先分類運(yùn)算步驟:先確定符號(hào),再計(jì)算絕對(duì)值做一做:(口答)確定下列各題中和的符號(hào),并說(shuō)明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 計(jì)算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:請(qǐng)四位學(xué)生板演,讓學(xué)生批改并說(shuō)明理由。
1.掌握有理數(shù)混合運(yùn)算的順序,并能熟練地進(jìn)行有理數(shù)加、減、乘、除、乘方的混合運(yùn)算.2.在運(yùn)算過(guò)程中能合理地應(yīng)用運(yùn)算律簡(jiǎn)化運(yùn)算.一、情境導(dǎo)入在學(xué)完有理數(shù)的混合運(yùn)算后,老師為了檢驗(yàn)同學(xué)們的學(xué)習(xí)效果,出了下面這道題:計(jì)算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰(shuí)的計(jì)算正確嗎?二、合作探究探究點(diǎn)一:有理數(shù)的混合運(yùn)算計(jì)算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運(yùn)算,運(yùn)算時(shí),一定要注意運(yùn)算順序,尤其是本題中的乘除運(yùn)算.要從左到右進(jìn)行計(jì)算;(2)題有大括號(hào)、中括號(hào),在運(yùn)算時(shí),可從里到外進(jìn)行.注意要靈活掌握運(yùn)算順序.
解析:本題是要求兩個(gè)未知數(shù),即3和4的權(quán).所以應(yīng)把平均數(shù)與方程組綜合起來(lái),利用平均數(shù)的定義來(lái)列方程,組成方程組求解.解:設(shè)投進(jìn)3個(gè)球的有x人,投進(jìn)4個(gè)球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進(jìn)3個(gè)球的有9人,投進(jìn)4個(gè)球的有3人.方法總結(jié):利用平均數(shù)的公式解題時(shí),要弄清數(shù)據(jù)及相應(yīng)的權(quán),避免出錯(cuò).三、板書(shū)設(shè)計(jì)平均數(shù)算術(shù)平均數(shù):x=1n(x1+x2+…+xn)加權(quán)平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過(guò)探索算術(shù)平均數(shù)和加權(quán)平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學(xué)生的思維能力;通過(guò)有關(guān)平均數(shù)問(wèn)題的解決,提升學(xué)生的數(shù)學(xué)應(yīng)用能力.通過(guò)解決實(shí)際問(wèn)題,體會(huì)數(shù)學(xué)與社會(huì)生活的密切聯(lián)系,了解數(shù)學(xué)的價(jià)值,增進(jìn)學(xué)生對(duì)數(shù)學(xué)的理解和增加學(xué)好數(shù)學(xué)的信心.
探究點(diǎn)三:函數(shù)的圖象洗衣機(jī)在洗滌衣服時(shí),每漿洗一遍都經(jīng)歷了注水、清洗、排水三個(gè)連續(xù)過(guò)程(工作前洗衣機(jī)內(nèi)無(wú)水).在這三個(gè)過(guò)程中,洗衣機(jī)內(nèi)的水量y(升)與漿洗一遍的時(shí)間x(分)之間函數(shù)關(guān)系的圖象大致為()解析:∵洗衣機(jī)工作前洗衣機(jī)內(nèi)無(wú)水,∴A,B兩選項(xiàng)不正確,淘汰;又∵洗衣機(jī)最后排完水,∴D選項(xiàng)不正確,淘汰,所以選項(xiàng)C正確,故選C.方法總結(jié):本題考查了對(duì)函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個(gè)變量的變化情況.三、板書(shū)設(shè)計(jì)函數(shù)定義:自變量、因變量、常量函數(shù)的關(guān)系式三種表示方法函數(shù)值函數(shù)的圖象在教學(xué)過(guò)程中,注意通過(guò)對(duì)以前學(xué)過(guò)的“變量之間的關(guān)系”的回顧與思考,力求提供生動(dòng)有趣的問(wèn)題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,并通過(guò)層層深入的問(wèn)題設(shè)計(jì),引導(dǎo)學(xué)生進(jìn)行觀察、操作、交流、歸納等數(shù)學(xué)活動(dòng).在活動(dòng)中歸納、概括出函數(shù)的概念,并通過(guò)師生交流、生生交流、辨析識(shí)別等加深學(xué)生對(duì)函數(shù)概念的理解.
② 命題的含義:判斷一件事情的句子,叫做命題,如果一個(gè)句子沒(méi)有對(duì)某一件事情作出任何判斷,那么它就不是命題.活動(dòng)目的:通過(guò)課后的總結(jié),使學(xué)生對(duì)定義、命題等概念有更清楚的認(rèn)識(shí),讓學(xué)生在頭腦中對(duì)本節(jié)課進(jìn)行系統(tǒng)的歸納與整理.教學(xué)效果:學(xué)生在有了前面對(duì)定義、特別是命題概念的學(xué)習(xí)后,能了解命題的結(jié)構(gòu),以及哪些是命題,使學(xué)生對(duì)命題的學(xué)習(xí)有了清楚的認(rèn)識(shí)。第五環(huán)節(jié) 課后練習(xí)學(xué)習(xí)小組搜集八年級(jí)數(shù)學(xué)課本中的新學(xué)的部分定義、命題,看誰(shuí)找得多.四、教學(xué)反思本節(jié)課的設(shè)計(jì)具有如下特點(diǎn):(1)采用了“小品表演”的形式引入新課,意在激起學(xué)生對(duì)數(shù)學(xué)的興趣,讓學(xué)生知道,數(shù)學(xué)不是枯燥無(wú)味的。并能從表演中不同的人對(duì)“黑客”這個(gè)名詞的不同理解更好地悟出“定義”的含義。
第五環(huán)節(jié):課堂小結(jié)內(nèi)容:師生相互交流總結(jié)解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉保?解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái),并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程組的解.目的:鼓勵(lì)學(xué)生通過(guò)本節(jié)課的學(xué)習(xí),談?wù)勛约旱氖斋@與感受,加深對(duì) “溫故而知新” 的體會(huì),知道“學(xué)而時(shí)習(xí)之”.設(shè)計(jì)效果:學(xué)生能夠在課堂上暢所欲言,并通過(guò)自己的歸納總結(jié),進(jìn)一步鞏固了所學(xué)知識(shí).第六環(huán)節(jié):布置作業(yè)課本習(xí)題5.2教學(xué)設(shè)計(jì)反思1.引入自然.二元一次方程組的解法是學(xué)習(xí)二元一次方程組的重要內(nèi)容.教材通過(guò)上一小節(jié)的實(shí)際問(wèn)題,比較一元一次方程的列法和解法,從而自然引入二元一次方程組的代入消元解法.
2.法解二元一次方程組,是提升學(xué)生求解二元一次方程的基本技能課,在例題的設(shè)置上充分體現(xiàn)化歸思想.2.在學(xué)習(xí)二元一次方程組的解法中,關(guān)鍵是領(lǐng)會(huì)其本質(zhì)思想——消元,體會(huì)“化未知為已知”的化歸思想.因而在教學(xué)過(guò)程中教師通過(guò)對(duì)問(wèn)題的創(chuàng)設(shè),鼓勵(lì)學(xué)生去觀察方程的特點(diǎn),在過(guò)手訓(xùn)練中提高學(xué)生的解答正確率和表達(dá)規(guī)范性,提升學(xué)生學(xué)會(huì)數(shù)學(xué)的信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.3.通過(guò)精心設(shè)計(jì)的問(wèn)題,引導(dǎo)學(xué)生在已有知識(shí)的基礎(chǔ)上,自己比較、分析得出二元一次方程組的解法,在鞏固訓(xùn)練活動(dòng)中,加深學(xué)生對(duì)“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過(guò)渡自然。讓學(xué)生深刻的體會(huì)到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過(guò)“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學(xué)生掌握知識(shí)、技能和方法,提高學(xué)習(xí)效率,而且還加深了對(duì)數(shù)學(xué)中通性和通法的認(rèn)識(shí),體會(huì)學(xué)習(xí)數(shù)學(xué)和研究數(shù)學(xué)的規(guī)律,提升數(shù)學(xué)思維能力.
在探究估算方法的時(shí)候,教師要注重適時(shí)的引導(dǎo),以免讓學(xué)生無(wú)從下手.在教學(xué)過(guò)程中一定要讓學(xué)生體會(huì)估算的實(shí)用價(jià)值,了解到“數(shù)學(xué)既來(lái)源與生活,又回歸到生活為生活服務(wù)”.(二)課堂評(píng)價(jià)的一些思考在教學(xué)中要多鼓勵(lì)學(xué)生用自己的語(yǔ)言表達(dá)他們的想法,在估算的過(guò)程中多給予適當(dāng)?shù)囊龑?dǎo)和評(píng)價(jià),讓學(xué)生逐步把握估算的方法,找到解決問(wèn)題的信心.比如對(duì)“畫(huà)能掛上去嗎”這個(gè)問(wèn)題情境,學(xué)生可能提出不同的看法,有些學(xué)生可能認(rèn)為可以掛上去,因?yàn)槿诉€有身高,完全可以彌補(bǔ)梯子穩(wěn)定擺放的高度和掛畫(huà)位置的高度之間的差距,有些學(xué)生可能認(rèn)為,人不可能爬到梯子的頂部,加上人如果本來(lái)比較矮,畫(huà)就不能掛上去等等想法,教師都應(yīng)該給予肯定,這樣才能激發(fā)學(xué)生思考問(wèn)題的熱情,調(diào)動(dòng)學(xué)生探究問(wèn)題的積極性.作為教師,一定要尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,鼓勵(lì)探究方式、表達(dá)方式和解題方法的多樣化.
【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關(guān)于字母系數(shù)的方程組,解方程組即可.三、板書(shū)設(shè)計(jì)解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學(xué)生的探究有很好的認(rèn)知基礎(chǔ),探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導(dǎo)學(xué)生充分思考和體驗(yàn)轉(zhuǎn)化與化歸思想,增強(qiáng)學(xué)生的觀察歸納能力,提高學(xué)生的學(xué)習(xí)能力.
一、情境導(dǎo)入神舟十號(hào)是中國(guó)神舟號(hào)系列飛船之一,主要由推進(jìn)艙(服務(wù)艙)、返回艙、軌道艙組成.神舟十號(hào)在酒泉衛(wèi)星發(fā)射中心“921工位”,于2013年6月11日17時(shí)38分02.666秒發(fā)射,由長(zhǎng)征二號(hào)F改進(jìn)型運(yùn)載火箭(遙十)“神箭”成功發(fā)射.在軌飛行十五天左右,加上發(fā)射與返回,其中停留天宮一號(hào)十二天,共搭載三位航天員——聶海勝、張曉光、王亞平.6月13日與天宮一號(hào)進(jìn)行對(duì)接.6月26日回歸地球.要讀懂這段報(bào)導(dǎo),你認(rèn)為要知道哪些名稱和術(shù)語(yǔ)的含義?二、合作探究探究點(diǎn)一:定義 下列語(yǔ)句屬于定義的是()A.明天是晴天B.長(zhǎng)方形的四個(gè)角都是直角C.等角的補(bǔ)角相等D.平行四邊形是兩組對(duì)邊分別平行的四邊形解析:作出正確選擇的關(guān)鍵是理解定義的含義.A是對(duì)天氣的預(yù)測(cè),B是描述長(zhǎng)方形的性質(zhì),C是描述補(bǔ)角的性質(zhì).只有D符合定義的概念.故選D.方法總結(jié):定義指的是對(duì)術(shù)語(yǔ)和名稱的含義的描述,是對(duì)一個(gè)事物區(qū)分于其他事物的本質(zhì)特征的描述,而不是對(duì)其性質(zhì)的判斷.
一、情境導(dǎo)入上一節(jié)課我們做過(guò):由兩個(gè)邊長(zhǎng)為1的小正方形,通過(guò)剪一剪,拼一拼,得到一個(gè)邊長(zhǎng)為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無(wú)理數(shù).在前面我們學(xué)過(guò)若x2=a,則a叫做x的平方,反過(guò)來(lái)x叫做a的什么呢?二、合作探究探究點(diǎn)一:算術(shù)平方根的概念【類型一】 求一個(gè)數(shù)的算術(shù)平方根求下列各數(shù)的算術(shù)平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術(shù)平方根的定義求非負(fù)數(shù)的算術(shù)平方根,只要找到一個(gè)非負(fù)數(shù)的平方等于這個(gè)非負(fù)數(shù)即可.解:(1)∵82=64,∴64的算術(shù)平方根是8;(2)∵(32)2=94=214,∴214的算術(shù)平方根是32;(3)∵0.62=0.36,∴0.36的算術(shù)平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術(shù)平方根是3.方法總結(jié):(1)求一個(gè)數(shù)的算術(shù)平方根時(shí),首先要弄清是求哪個(gè)數(shù)的算術(shù)平方根,分清求81與81的算術(shù)平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個(gè)非負(fù)數(shù)的算術(shù)平方根常借助平方運(yùn)算,因此熟記常用平方數(shù)對(duì)求一個(gè)數(shù)的算術(shù)平方根十分有用.
已知xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),求m和n的值.解析:根據(jù)同類項(xiàng)的概念,可列出含字母m和n的方程組,從而求出m和n.解:因?yàn)閤m-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當(dāng)m=4,n=3時(shí),xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng).方法總結(jié):解這類題,就是根據(jù)同類項(xiàng)的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書(shū)設(shè)計(jì)用加減法解二元一次方程組的步驟:①變形,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等;②加減消元;③解一元一次方程;④求另一個(gè)未知數(shù)的值,得方程組的解.進(jìn)一步理解二元一次方程組的“消元”思想,初步體會(huì)數(shù)學(xué)研究中“化未知為已知”的化歸思想.選擇恰當(dāng)?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學(xué)生的觀察、分析問(wèn)題的能力.
1.細(xì)講概念、強(qiáng)化訓(xùn)練要想讓學(xué)生正確、牢固地樹(shù)立起算術(shù)平方根的概念,需要由淺入深、不斷深化的過(guò)程.概念是由具體到抽象、由特殊到一般,經(jīng)過(guò)分析、綜合去掉非本質(zhì)特征,保持本質(zhì)屬性而形成的.概念的形成過(guò)程也是思維過(guò)程,加強(qiáng)概念形成過(guò)程的教學(xué),對(duì)提高學(xué)生的思維水平是很有必要的.概念教學(xué)過(guò)程中要做到:講清概念,加強(qiáng)訓(xùn)練,逐步深化.“講清概念”就是通過(guò)具體實(shí)例揭露算術(shù)平方根的本質(zhì)特征.算術(shù)平方根的本質(zhì)特征就是定義中指出的:“如果一個(gè)正數(shù) 的平方等于 ,即 ,那么這個(gè)正數(shù) 就叫做 的算術(shù)平方根,”的“正數(shù) ”,即被開(kāi)方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術(shù)平方根也必須是正的.當(dāng)然零的算術(shù)平方根是零.
解析:要在地球儀上確定南昌市的位置,需要知道它的經(jīng)緯度,故選D.方法總結(jié):本題考查了坐標(biāo)確定位置,熟記位置的確定需要橫向與縱向的兩個(gè)數(shù)據(jù)是解題的關(guān)鍵.【類型二】 用“區(qū)域定位法”確定位置如圖所示是某市區(qū)的部分簡(jiǎn)圖,文化宮在D2區(qū),體育場(chǎng)在C4區(qū),據(jù)此說(shuō)明醫(yī)院在________區(qū),陽(yáng)光中學(xué)在________區(qū).解析:本題首先給出的是表示文化宮和體育場(chǎng)的位置,即D2區(qū)和C4區(qū),這就確定了本題中表示建筑物位置的方法,即字母表示列數(shù),數(shù)字表示行數(shù).故填A(yù)3,D5.方法總結(jié):解此類題先要弄清區(qū)域定位法中字母及數(shù)字各自表示的含義,再用已知的表示方法來(lái)確定相關(guān)位置.三、板書(shū)設(shè)計(jì)確定位置有序?qū)崝?shù)對(duì)方位法經(jīng)緯度區(qū)域定位法將現(xiàn)實(shí)生活中常用的定位方法呈現(xiàn)給學(xué)生,進(jìn)一步豐富學(xué)生的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),培養(yǎng)學(xué)生觀察、分析、歸納、概括的能力.教學(xué)過(guò)程中創(chuàng)設(shè)生動(dòng)活潑、直觀形象、且貼近他們生活的問(wèn)題情境;另一方面,為學(xué)生創(chuàng)造自主學(xué)習(xí)、合作交流的機(jī)會(huì),促使他們主動(dòng)參與、積極探究.
第一環(huán)節(jié)感受生活中的情境,導(dǎo)入新課通過(guò)若干圖片,引導(dǎo)學(xué)生感受生活中常常需要確定位置.導(dǎo)入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數(shù)軸上,確定一個(gè)點(diǎn)的位置需要幾個(gè)數(shù)據(jù)呢? 答:一個(gè),例如,若A點(diǎn)表示-2,B點(diǎn)表示3,則由-2和3就可以在數(shù)軸上找到A點(diǎn)和B點(diǎn)的位置??偨Y(jié)得出結(jié)論:在直線上, 確定一個(gè)點(diǎn)的位置一般需要一個(gè)數(shù)據(jù).(2)啟新:在平面內(nèi),又如何確定一個(gè)點(diǎn)的位置呢?請(qǐng)同學(xué)們根據(jù)生活中確定位置的實(shí)例,請(qǐng)談?wù)勛约旱目捶?2.舉例探究Ⅰ. 探究1(1)在電影院內(nèi)如何找到電影票上指定的位置?(2)在電影票上“6排3號(hào)”與“3排6號(hào)”中的“6”的含義有什么不同?(3)如果將“6排3號(hào)”簡(jiǎn)記作(6,3),那么“3排6號(hào)”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內(nèi),確定一個(gè)座位一般需要幾個(gè)數(shù)據(jù)?結(jié)論:生活中常常用“排數(shù)”和“號(hào)數(shù)”來(lái)確定位置. Ⅱ. 學(xué)有所用(1) 你能用兩個(gè)數(shù)據(jù)表示你現(xiàn)在所坐的位置嗎?
(1)請(qǐng)你用代數(shù)式表示水渠的橫斷面面積;(2)計(jì)算當(dāng)a=3,b=1時(shí),水渠的橫斷面面積.解析:(1)根據(jù)梯形面積=12(上底+下底)×高,即可用含有a、b的代數(shù)式表示水渠橫斷面面積;(2)把a(bǔ)=3、b=1帶入到(1)中求出的代數(shù)式中,其結(jié)果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當(dāng)a=3,b=1時(shí)水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結(jié):解答本題時(shí)需搞清下列幾個(gè)問(wèn)題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據(jù)公式求圖形的面積需要知道哪幾個(gè)量?(4)這些量是否已知或能求出?搞清楚了這些問(wèn)題,求解就水到渠成.三、板書(shū)設(shè)計(jì)教學(xué)過(guò)程中,應(yīng)通過(guò)活動(dòng)使學(xué)生感知代數(shù)式運(yùn)算在判斷和推理上的意義,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生積極的情感和態(tài)度,為進(jìn)一步學(xué)習(xí)奠定堅(jiān)實(shí)的基礎(chǔ).
解 由題意可得,今年的年產(chǎn)值為a·(1+10%) 億元,于是明年的年產(chǎn)值為a·(1+10%)·(1+10%)= 1.21a(億元).若去年的年產(chǎn)值為2億元,則明年的年產(chǎn)值為1.21a =1.21×2 = 2.42(億元).答:該企業(yè)明年的年產(chǎn)值將能達(dá)到1.21a億元.由去年的年產(chǎn)值是2億元,可以預(yù)計(jì)明年的年產(chǎn)值是2.42億元.例3 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81的值是10,當(dāng)x = 3時(shí),求該代數(shù)式的值.解 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81=-27m-3n-81, 此時(shí)-27m-3n-81=10, 所以27m+3n=-91.則當(dāng)x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本題采用了一種重要的數(shù)學(xué)思想——“整體思想”.即是考慮問(wèn)題時(shí)不是著眼于他的局部特征,而是把注意力和著眼點(diǎn)放在問(wèn)題的整體結(jié)構(gòu)上,把一些彼此獨(dú)立,但實(shí)質(zhì)上又相互緊密聯(lián)系著的量作為整體來(lái)處理的思想方法.