本節(jié)課是在學(xué)習(xí)了三角函數(shù)圖象和性質(zhì)的前提下來(lái)學(xué)習(xí)三角函數(shù)模型的簡(jiǎn)單應(yīng)用,進(jìn)一步突出函數(shù)來(lái)源于生活應(yīng)用于生活的思想,讓學(xué)生體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問(wèn)題的數(shù)學(xué)“建?!彼枷?從而培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力.課程目標(biāo)1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會(huì)用三角函數(shù)模型解決一些簡(jiǎn)單的實(shí)際問(wèn)題.2.實(shí)際問(wèn)題抽象為三角函數(shù)模型. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯抽象:實(shí)際問(wèn)題抽象為三角函數(shù)模型問(wèn)題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實(shí)際問(wèn)題中抽取基本的數(shù)學(xué)關(guān)系來(lái)建立數(shù)學(xué)模型; 3.數(shù)學(xué)運(yùn)算:實(shí)際問(wèn)題求解; 4.數(shù)學(xué)建模:體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問(wèn)題的數(shù)學(xué)建模思想,提高學(xué)生的建模、分析問(wèn)題、數(shù)形結(jié)合、抽象概括等能力.
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導(dǎo),運(yùn)用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀(guān)、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.了解兩角差的余弦公式的推導(dǎo)過(guò)程.2.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運(yùn)用,了解公式的正用、逆用以及角的變換的常用方法.4.通過(guò)正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學(xué)生數(shù)形結(jié)合和類(lèi)比的思想方法。 a.數(shù)學(xué)抽象:公式的推導(dǎo);b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學(xué)運(yùn)算:運(yùn)用和差角角公式求值;d.直觀(guān)想象:兩角差的余弦公式的推導(dǎo);e.數(shù)學(xué)建模:公式的靈活運(yùn)用;
一、情境導(dǎo)學(xué)我國(guó)著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問(wèn)題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡(jiǎn)單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對(duì)于研究空間形式,你要真正的‘騰飛’,不通過(guò)數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問(wèn)題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長(zhǎng)為單位長(zhǎng)度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過(guò)每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱(chēng)為Oxy平面,Oyz平面,Ozx平面.
二、直線(xiàn)與拋物線(xiàn)的位置關(guān)系設(shè)直線(xiàn)l:y=kx+m,拋物線(xiàn):y2=2px(p>0),將直線(xiàn)方程與拋物線(xiàn)方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線(xiàn)與拋物線(xiàn)相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線(xiàn)與拋物線(xiàn)相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線(xiàn)與拋物線(xiàn)相離,沒(méi)有公共點(diǎn).(2)若k=0,直線(xiàn)與拋物線(xiàn)有一個(gè)交點(diǎn),此時(shí)直線(xiàn)平行于拋物線(xiàn)的對(duì)稱(chēng)軸或與對(duì)稱(chēng)軸重合.因此直線(xiàn)與拋物線(xiàn)有一個(gè)公共點(diǎn)是直線(xiàn)與拋物線(xiàn)相切的必要不充分條件.二、典例解析例5.過(guò)拋物線(xiàn)焦點(diǎn)F的直線(xiàn)交拋物線(xiàn)于A(yíng)、B兩點(diǎn),通過(guò)點(diǎn)A和拋物線(xiàn)頂點(diǎn)的直線(xiàn)交拋物線(xiàn)的準(zhǔn)線(xiàn)于點(diǎn)D,求證:直線(xiàn)DB平行于拋物線(xiàn)的對(duì)稱(chēng)軸.【分析】設(shè)拋物線(xiàn)的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線(xiàn)OA的方程為: = = ,可得yD= .設(shè)直線(xiàn)AB的方程為:my=x﹣ ,與拋物線(xiàn)的方程聯(lián)立化為y2﹣2pm﹣p2=0,
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線(xiàn)和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線(xiàn)及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線(xiàn)的學(xué)習(xí)后再學(xué)習(xí)拋物線(xiàn),是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個(gè)角度去認(rèn)識(shí)拋物線(xiàn).教材在拋物線(xiàn)的定義這個(gè)內(nèi)容的安排上是:先從直觀(guān)上認(rèn)識(shí)拋物線(xiàn),再?gòu)漠?huà)法中提煉出拋物線(xiàn)的幾何特征,由此抽象概括出拋物線(xiàn)的定義,最后是拋物線(xiàn)定義的簡(jiǎn)單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過(guò)豐富的實(shí)例展開(kāi)教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對(duì)概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個(gè)“圓錐曲線(xiàn)方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的思想觀(guān)點(diǎn)在這節(jié)知識(shí)中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)
二、典例解析例4.如圖,雙曲線(xiàn)型冷卻塔的外形,是雙曲線(xiàn)的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線(xiàn)的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線(xiàn)的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線(xiàn)方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線(xiàn)方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線(xiàn)l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過(guò)雙曲線(xiàn) 的右焦點(diǎn)F2,傾斜角為30度的直線(xiàn)交雙曲線(xiàn)于A(yíng),B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問(wèn)題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來(lái)處理.解:由雙曲線(xiàn)的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€(xiàn)AB的傾斜角是30°,且直線(xiàn)經(jīng)過(guò)右焦點(diǎn)F2,所以,直線(xiàn)AB的方程為
∵在△EFP中,|EF|=2c,EF上的高為點(diǎn)P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點(diǎn)坐標(biāo)為(5,4).由兩點(diǎn)間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線(xiàn)的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線(xiàn)的標(biāo)準(zhǔn)方程.(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-5,0),(5,0),雙曲線(xiàn)上的點(diǎn)與兩焦點(diǎn)的距離之差的絕對(duì)值等于8;(2)以橢圓x^2/8+y^2/5=1長(zhǎng)軸的端點(diǎn)為焦點(diǎn),且經(jīng)過(guò)點(diǎn)(3,√10);(3)a=b,經(jīng)過(guò)點(diǎn)(3,-1).解:(1)由雙曲線(xiàn)的定義知,2a=8,所以a=4,又知焦點(diǎn)在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線(xiàn)的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線(xiàn)的焦點(diǎn)在x軸上,且c=2√2.設(shè)雙曲線(xiàn)的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線(xiàn)的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點(diǎn)在x軸上時(shí),可設(shè)雙曲線(xiàn)方程為x2-y2=a2,將點(diǎn)(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線(xiàn)的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點(diǎn)在y軸上時(shí),可設(shè)雙曲線(xiàn)方程為y2-x2=a2,將點(diǎn)(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點(diǎn)不可能在y軸上.綜上,所求雙曲線(xiàn)的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱(chēng)軸旋轉(zhuǎn)一周形成的曲面)的一部分。過(guò)對(duì)稱(chēng)軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門(mén)位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線(xiàn),經(jīng)過(guò)旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口A(yíng)BC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線(xiàn)分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線(xiàn)向量都垂直,從而根據(jù)線(xiàn)面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過(guò)坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線(xiàn)向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說(shuō)明(D_1 M) ?與法向量共線(xiàn),從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線(xiàn),因此D1M⊥平面EFB1.
學(xué)生借助對(duì)對(duì)聯(lián)的賞析,回味杜甫窮年漂泊的一生,體會(huì)杜甫作為一個(gè)深受儒家思想影響的讀書(shū)人,忠君念闕,心系蒼生的偉大情懷。(這一設(shè)計(jì)理念源于孟子所云:“誦其文,讀其詩(shī),不知其人,可乎?是以論其世也?!敝苏撌朗氰b賞詩(shī)歌的第一步 )(二)研讀課文1、初讀,朗讀吟誦,感知韻律美。要求學(xué)生讀準(zhǔn)字音,讀懂句意,體會(huì)律詩(shī)的節(jié)奏、押韻的順暢之美。2、再讀,披詞入情,感受感情美。讓學(xué)生用一個(gè)字概括這首詩(shī)的情感內(nèi)容。(此教學(xué)設(shè)計(jì)是從新課標(biāo)要求的文學(xué)作品應(yīng)先整體感知,培養(yǎng)學(xué)生歸納推理的邏輯思維能力出發(fā)進(jìn)行的設(shè)計(jì)。)其答案是一個(gè)“悲”字,由此輻射出兩個(gè)問(wèn)題:詩(shī)人因何而“悲”?如何寫(xiě)“悲”?(此問(wèn)題設(shè)計(jì)順勢(shì)而出,目的在于培養(yǎng)學(xué)生探究問(wèn)題的能力。)
蒲松齡(1640——1715)字留仙,一字劍臣,號(hào)柳泉居士。山東淄川(今淄博)人。清代小說(shuō)家,出身于沒(méi)落地主家庭。天資聰明,學(xué)問(wèn)深厚,十九歲時(shí)連中縣、府、道三個(gè)第一,但此后屢應(yīng)省試不第,年七十一,始被補(bǔ)上歲貢生,一生憂(yōu)郁自傷,窮愁潦倒。從二十歲左右開(kāi)始寫(xiě)作,歷時(shí)二十余年,創(chuàng)作了文言短篇小說(shuō)集《聊齋志異》。另有詩(shī)、文集《聊齋詩(shī)集》、《聊齋文集》。《聊齋志異》是蒲松齡傾力創(chuàng)作的文言短篇小說(shuō)集?!傲凝S”是作者的書(shū)齋名?!爸井悺本褪怯浭龌ㄑ砑捌渌恍┗恼Q不經(jīng)的奇聞?shì)W事。作者巧妙地通過(guò)這些離經(jīng)虛幻的故事,大膽地揭露社會(huì)多方面的黑暗現(xiàn)實(shí),贊美了青年男女敢于沖破封建禮教樊籬的精神,抒發(fā)了作者自己滿(mǎn)腔的“孤憤”。郭沫若曾題蒲松齡故居聯(lián):“寫(xiě)鬼寫(xiě)妖,高人一等;刺貪刺虐,入木三分?!崩仙犷}聯(lián):“鬼狐有性格,笑罵成文章?!焙?jiǎn)明而生動(dòng)地道出了《聊齋志異》的文學(xué)特點(diǎn)。
8、板書(shū)裝在套子里的人別里科夫的形象——有形的套子套己——無(wú)形的套子套人第二課時(shí)合作探究:目標(biāo)挖掘主題及現(xiàn)實(shí)意義。問(wèn)題設(shè)置,銜接上節(jié)課內(nèi)容,層層深入。1、結(jié)合上節(jié)課別里科夫的形象分析:他的思想被什么套住,其悲劇原因在哪?(根據(jù)人物形象的分析與社會(huì)背景的了解,直擊主題。)沙皇腐朽的專(zhuān)制統(tǒng)治套住了他的思想,沙皇的清規(guī)戒律使他不敢越雷池一步,所以他是受害者,但他的身份性格以及特定的社會(huì)環(huán)境,又讓他成為沙皇統(tǒng)治的捍衛(wèi)者。2、他戀愛(ài)的情節(jié)以及科瓦連科這兩個(gè)人物的塑造的意義?(從人物以及主題入手,推翻沙皇的腐朽反動(dòng)的統(tǒng)治,必須是每一個(gè)人都敢于打破套子,喚醒革新,更新觀(guān)念,拒絕腐朽。)別里科夫渴望打破束縛,也想革新,而科瓦連科兩個(gè)人物體現(xiàn)朝氣活潑,以及勇于打破常規(guī)束縛的勇氣,為革新升起了一片曙光。3、塑造別里科夫的手法,除了一般刻畫(huà)人物方法外,還有什么方法?
三個(gè)“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學(xué)的重要內(nèi)容,具有豐富的內(nèi)涵和密切的聯(lián)系,同時(shí)也是研究包含二次曲線(xiàn)在內(nèi)的許多內(nèi)容的工具 高考試題中近一半的試題與這三個(gè)“二次”問(wèn)題有關(guān) 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標(biāo)1. 通過(guò)探索,使學(xué)生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學(xué)生能夠運(yùn)用二次函數(shù)及其圖像,性質(zhì)解決實(shí)際問(wèn)題. 3. 滲透數(shù)形結(jié)合思想,進(jìn)一步培養(yǎng)學(xué)生綜合解題能力。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問(wèn)題;3.數(shù)學(xué)運(yùn)算:解一元二次不等式;4.數(shù)據(jù)分析:一元二次不等式解決實(shí)際問(wèn)題;5.數(shù)學(xué)建模:運(yùn)用數(shù)形結(jié)合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。
新知講授(一)——隨機(jī)試驗(yàn) 我們把對(duì)隨機(jī)現(xiàn)象的實(shí)現(xiàn)和對(duì)它的觀(guān)察稱(chēng)為隨機(jī)試驗(yàn),簡(jiǎn)稱(chēng)試驗(yàn),常用字母E表示。我們通常研究以下特點(diǎn)的隨機(jī)試驗(yàn):(1)試驗(yàn)可以在相同條件下重復(fù)進(jìn)行;(2)試驗(yàn)的所有可能結(jié)果是明確可知的,并且不止一個(gè);(3)每次試驗(yàn)總是恰好出現(xiàn)這些可能結(jié)果中的一個(gè),但事先不確定出現(xiàn)哪個(gè)結(jié)果。新知講授(二)——樣本空間思考一:體育彩票搖獎(jiǎng)時(shí),將10個(gè)質(zhì)地和大小完全相同、分別標(biāo)號(hào)0,1,2,...,9的球放入搖獎(jiǎng)器中,經(jīng)過(guò)充分?jǐn)嚢韬髶u出一個(gè)球,觀(guān)察這個(gè)球的號(hào)碼。這個(gè)隨機(jī)試驗(yàn)共有多少個(gè)可能結(jié)果?如何表示這些結(jié)果?根據(jù)球的號(hào)碼,共有10種可能結(jié)果。如果用m表示“搖出的球的號(hào)碼為m”這一結(jié)果,那么所有可能結(jié)果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機(jī)試驗(yàn)E的每個(gè)可能的基本結(jié)果稱(chēng)為樣本點(diǎn),全體樣本點(diǎn)的集合稱(chēng)為試驗(yàn)E的樣本空間。
本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線(xiàn)、余弦線(xiàn)和誘導(dǎo)公式等知識(shí)的延伸,同時(shí),它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對(duì)于三角變換、三角恒等式的證明和三角函數(shù)式的化簡(jiǎn)、求值等三角問(wèn)題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運(yùn)用二倍角公式解決有關(guān)的化簡(jiǎn)、求值、證明問(wèn)題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運(yùn)用公式解決基本三角函數(shù)式的化簡(jiǎn)、證明等問(wèn)題;3.數(shù)學(xué)運(yùn)算:運(yùn)用公式解決基本三角函數(shù)式求值問(wèn)題.4.數(shù)學(xué)建模:學(xué)生體會(huì)到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.
④結(jié)合杜甫的身世遭遇,你認(rèn)為這里的“艱難苦恨”包含著哪些情感?第五步是拓展延伸對(duì)比閱讀李白的《夢(mèng)游天姥吟留別》,討論詩(shī)體形式與詩(shī)人情感抒發(fā)之間的關(guān)系。第六步是達(dá)標(biāo)檢測(cè)我將緊扣考試題型,以理解性默寫(xiě)的形式,當(dāng)堂檢驗(yàn)學(xué)生對(duì)詩(shī)歌的掌握情況第三環(huán):課后跟蹤課后作業(yè):①背誦并默寫(xiě)詩(shī)歌②鑒賞詩(shī)歌《秋興八首》 (其一) ,找出詩(shī)歌所用意象,體會(huì)意境,表達(dá)情感。玉露凋傷楓樹(shù)林,巫山巫峽氣蕭森。江間波浪兼天涌,塞上風(fēng)云接地陰。叢菊兩開(kāi)他日淚,孤舟一系故園心。寒衣處處催刀尺,搗衣砧上拂還來(lái)。最后,我來(lái)說(shuō)一說(shuō)我的板書(shū)設(shè)計(jì),我的板書(shū)設(shè)計(jì)簡(jiǎn)潔明了,清晰直觀(guān),能夠突出本課的重點(diǎn)和難點(diǎn)。以上就是我本說(shuō)課的全部?jī)?nèi)容,再次感謝各位考官的聆聽(tīng)!
第一環(huán)節(jié):落實(shí)基礎(chǔ),整體感知由于本課含有較多的通假字,詞類(lèi)活用和文言句式,如:“離騷者,猶離憂(yōu)也”中的“離”通罹難的“罹”,以及注釋中并沒(méi)有出現(xiàn)的“齊與楚從親”的“從”通“縱”,合縱的意思。 “秦虎狼之地”中的“虎狼”是名詞做狀語(yǔ)。還有判斷句如“屈原者,名平,楚之同姓也?!钡?。字詞是學(xué)生讀懂文章的基礎(chǔ),教師請(qǐng)數(shù)位學(xué)生通過(guò)逐段朗讀結(jié)合教師的講解,既訂正了字音,又梳理的文言實(shí)、虛詞和文言句式,體現(xiàn)了語(yǔ)文是基礎(chǔ)性和工具性學(xué)科。疏通字詞和句子后,教師請(qǐng)學(xué)生默讀課文,劃分層次,提取圈點(diǎn)出關(guān)鍵詞。學(xué)生邊讀邊思考,教師和學(xué)生一起完成本課提綱,教師根據(jù)學(xué)生答復(fù)適時(shí)板書(shū)。(板書(shū)內(nèi)容見(jiàn)第四)此外,對(duì)于文本的第12自然段,出現(xiàn)了屈原和漁父的對(duì)話(huà),教師請(qǐng)學(xué)生分角色朗讀,領(lǐng)會(huì)人物的情感,又可以活潑課堂氣氛和激發(fā)學(xué)生的表現(xiàn)欲、求知欲。
3、通過(guò)分析理解作者是如何在典型環(huán)境中刻畫(huà)出典型人物的。(設(shè)計(jì)意圖:因?yàn)椤镀胀ǜ咧姓Z(yǔ)文新課程標(biāo)準(zhǔn)》中要求學(xué)生把握?qǐng)?bào)告文學(xué)的語(yǔ)言特色,所以需要分析文中重點(diǎn)語(yǔ)句的語(yǔ)言特色。同時(shí),由于報(bào)告文學(xué)的藝術(shù)價(jià)值體現(xiàn)在文學(xué)性上,它不能像新聞報(bào)道那樣,只有事件梗概,它必須刻畫(huà)人物形象,必須有環(huán)境等方面的描寫(xiě),加強(qiáng)語(yǔ)言的藝術(shù)感染力,所以在教學(xué)過(guò)程中要注重對(duì)典型環(huán)境中的典型人物的分析。)三、課時(shí)安排:兩課時(shí)四、教學(xué)設(shè)計(jì):(第一課時(shí)的教學(xué)過(guò)程)1、通過(guò)表格來(lái)對(duì)比分析報(bào)告文學(xué)與新聞的異同點(diǎn)。使學(xué)生明確理解到報(bào)告文學(xué)的藝術(shù)價(jià)值在于它的文學(xué)性,而其文學(xué)性主要通過(guò)對(duì)人物的刻畫(huà)、環(huán)境的描寫(xiě)等方面的文學(xué)手段的綜合運(yùn)用。2、為了更好的了解本文,要學(xué)生相互分享收集到的時(shí)代背景資料及作者簡(jiǎn)介。3、讓學(xué)生快速瀏覽課文找出本文的表層結(jié)構(gòu),初步感知到本文的表層結(jié)構(gòu)是按照時(shí)間順序來(lái)敘述描寫(xiě)包身工一天的活動(dòng)及按事物發(fā)展的順序敘述包身工制度的產(chǎn)生發(fā)展及膨大。
一、說(shuō)教材(一)、 說(shuō)教材的地位與作用本單元屬于“中國(guó)革命傳統(tǒng)作品研習(xí)任務(wù)群”板塊,學(xué)習(xí)的是新聞和報(bào)告文學(xué)。要求學(xué)生體會(huì)學(xué)生在新時(shí)代人民當(dāng)家做主的豪情和壯志,繼承并發(fā)揚(yáng)愛(ài)國(guó)主義情感。這篇文章是一篇報(bào)告文學(xué),通過(guò)分析這類(lèi)文體的主要內(nèi)容和寫(xiě)作特點(diǎn)能培養(yǎng)學(xué)生閱讀報(bào)告性文。(二)、說(shuō)課標(biāo)《普通高中語(yǔ)文課程標(biāo)準(zhǔn)》要求,學(xué)習(xí)報(bào)告性文學(xué)要理解其基本內(nèi)容和社會(huì)影響,因此根據(jù)課程要求,我會(huì)重點(diǎn)講解包身工的遭遇,并通過(guò)對(duì)包身工遭遇的分析來(lái)引導(dǎo)學(xué)生把握作品。(三)、說(shuō)教學(xué)目標(biāo)根據(jù)普通高中課程標(biāo)準(zhǔn),結(jié)合本單元學(xué)習(xí)目標(biāo)以及文體特點(diǎn)我制定如下教學(xué)目標(biāo):1. 知識(shí)與能力了解報(bào)告文學(xué)的一般特征與結(jié)構(gòu)特點(diǎn),提高閱讀能力和篩選信息能力。2. 過(guò)程與方法通過(guò)對(duì)課文的主要內(nèi)容和寫(xiě)作特點(diǎn)的分析,體會(huì)文章主旨,把握?qǐng)?bào)告文學(xué)的特征。3. 情感態(tài)度與價(jià)值觀(guān)認(rèn)識(shí)包身工制度的殘酷與罪惡,尊重人權(quán)及勞動(dòng)權(quán)利,關(guān)注社會(huì)現(xiàn)實(shí),提高社會(huì)責(zé)任感。
教師深情旁白,歌手的動(dòng)情演唱,讓學(xué)生會(huì)沉浸在夫妻之情、家國(guó)之愛(ài)的深深思索中,此時(shí)的課堂氣氛應(yīng)是沉靜的。學(xué)生在這種情感體驗(yàn)中,一定能寫(xiě)出很精彩的對(duì)話(huà)]為了將這種課堂的高潮氣氛不至于因?qū)W習(xí)問(wèn)題的轉(zhuǎn)移而跌落,我又設(shè)計(jì)了過(guò)渡語(yǔ),在同學(xué)們的思緒有點(diǎn)紊亂中(我預(yù)想此時(shí)同學(xué)們的思緒是這樣的),教師說(shuō):畢竟,藕斷絲連的婦女們,對(duì)丈夫的不辭而別心存依戀?;蛟S她們還有許多悄悄話(huà)還未來(lái)得及向自己心愛(ài)的丈夫表白;或許她們?yōu)檎煞虻陌踩栾埐凰?;或許她們有一日不見(jiàn),如隔三秋的感覺(jué)。因此,幾個(gè)青年婦女就聚在水生家里商量探夫的事。雖然我們未能參與其中,但我們可以聽(tīng)其聲,見(jiàn)其人,感其情。不信請(qǐng)……)(這就實(shí)現(xiàn)了課堂教學(xué)環(huán)節(jié)的自然巧秒過(guò)渡,也同樣展示了我的上課風(fēng)格)