第五環(huán)節(jié):課堂小結(jié)內(nèi)容:師生相互交流總結(jié)解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉保?解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái),并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程組的解.目的:鼓勵(lì)學(xué)生通過(guò)本節(jié)課的學(xué)習(xí),談?wù)勛约旱氖斋@與感受,加深對(duì) “溫故而知新” 的體會(huì),知道“學(xué)而時(shí)習(xí)之”.設(shè)計(jì)效果:學(xué)生能夠在課堂上暢所欲言,并通過(guò)自己的歸納總結(jié),進(jìn)一步鞏固了所學(xué)知識(shí).第六環(huán)節(jié):布置作業(yè)課本習(xí)題5.2教學(xué)設(shè)計(jì)反思1.引入自然.二元一次方程組的解法是學(xué)習(xí)二元一次方程組的重要內(nèi)容.教材通過(guò)上一小節(jié)的實(shí)際問(wèn)題,比較一元一次方程的列法和解法,從而自然引入二元一次方程組的代入消元解法.
方法總結(jié):本題考查了冪的乘方的逆用及同底數(shù)冪的乘法,整體代入求解也比較關(guān)鍵.【類(lèi)型三】 逆用冪的乘方結(jié)合方程思想求值已知221=8y+1,9y=3x-9,則代數(shù)式13x+12y的值為_(kāi)_______.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,則21=3(y+1),2y=x-9,解得x=21,y=6,故代數(shù)式13x+12y=7+3=10.故答案為10.方法總結(jié):根據(jù)冪的乘方的逆運(yùn)算進(jìn)行轉(zhuǎn)化得到x和y的方程組,求出x、y,再計(jì)算代數(shù)式.三、板書(shū)設(shè)計(jì)1.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘.即(am)n=amn(m,n都是正整數(shù)).2.冪的乘方的運(yùn)用冪的乘方公式的探究方式和前節(jié)類(lèi)似,因此在教學(xué)中可以利用該優(yōu)勢(shì)展開(kāi)教學(xué),在探究過(guò)程中可以進(jìn)一步發(fā)揮學(xué)生的主動(dòng)性,盡可能地讓學(xué)生在已有知識(shí)的基礎(chǔ)上,通過(guò)自主探究,獲得冪的乘方運(yùn)算的感性認(rèn)識(shí),進(jìn)而理解運(yùn)算法則
一、情境導(dǎo)入神舟十號(hào)是中國(guó)神舟號(hào)系列飛船之一,主要由推進(jìn)艙(服務(wù)艙)、返回艙、軌道艙組成.神舟十號(hào)在酒泉衛(wèi)星發(fā)射中心“921工位”,于2013年6月11日17時(shí)38分02.666秒發(fā)射,由長(zhǎng)征二號(hào)F改進(jìn)型運(yùn)載火箭(遙十)“神箭”成功發(fā)射.在軌飛行十五天左右,加上發(fā)射與返回,其中停留天宮一號(hào)十二天,共搭載三位航天員——聶海勝、張曉光、王亞平.6月13日與天宮一號(hào)進(jìn)行對(duì)接.6月26日回歸地球.要讀懂這段報(bào)導(dǎo),你認(rèn)為要知道哪些名稱和術(shù)語(yǔ)的含義?二、合作探究探究點(diǎn)一:定義 下列語(yǔ)句屬于定義的是()A.明天是晴天B.長(zhǎng)方形的四個(gè)角都是直角C.等角的補(bǔ)角相等D.平行四邊形是兩組對(duì)邊分別平行的四邊形解析:作出正確選擇的關(guān)鍵是理解定義的含義.A是對(duì)天氣的預(yù)測(cè),B是描述長(zhǎng)方形的性質(zhì),C是描述補(bǔ)角的性質(zhì).只有D符合定義的概念.故選D.方法總結(jié):定義指的是對(duì)術(shù)語(yǔ)和名稱的含義的描述,是對(duì)一個(gè)事物區(qū)分于其他事物的本質(zhì)特征的描述,而不是對(duì)其性質(zhì)的判斷.
已知xm-n+1y與-2xn-1y3m-2n-5是同類(lèi)項(xiàng),求m和n的值.解析:根據(jù)同類(lèi)項(xiàng)的概念,可列出含字母m和n的方程組,從而求出m和n.解:因?yàn)閤m-n+1y與-2xn-1y3m-2n-5是同類(lèi)項(xiàng),所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當(dāng)m=4,n=3時(shí),xm-n+1y與-2xn-1y3m-2n-5是同類(lèi)項(xiàng).方法總結(jié):解這類(lèi)題,就是根據(jù)同類(lèi)項(xiàng)的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書(shū)設(shè)計(jì)用加減法解二元一次方程組的步驟:①變形,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等;②加減消元;③解一元一次方程;④求另一個(gè)未知數(shù)的值,得方程組的解.進(jìn)一步理解二元一次方程組的“消元”思想,初步體會(huì)數(shù)學(xué)研究中“化未知為已知”的化歸思想.選擇恰當(dāng)?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學(xué)生的觀察、分析問(wèn)題的能力.
解1:設(shè)該多邊形邊數(shù)為n,這個(gè)外角為x°則 因?yàn)閚為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因?yàn)?,所以 解2:設(shè)該多邊形邊數(shù)為n,這個(gè)外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習(xí),鞏固提高1.七邊形的內(nèi)角和等于______度;一個(gè)n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個(gè)頂點(diǎn)可以畫(huà)7條對(duì)角線,則這個(gè)n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個(gè)多邊形的各個(gè)內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設(shè)計(jì)一個(gè)內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實(shí)現(xiàn)。(填“能”與“不能”)6. 如圖4,要測(cè)量A、B兩點(diǎn)間距離,在O點(diǎn)打樁,取OA的中點(diǎn) C,OB的中點(diǎn)D,測(cè)得CD=30米,則AB=______米.
1.知識(shí)目標(biāo):在回顧與思考中建立本章的知識(shí)框架圖,復(fù)習(xí)有關(guān)定理的探索與證明,證明的思路和方法,尺規(guī)作圖等.2.能力目標(biāo):進(jìn)一步體會(huì)證明的必要性,發(fā)展學(xué)生的初步的演繹推理能力;進(jìn)一步掌握綜合法的證明方法,結(jié)合實(shí)例體會(huì)反證法的含義;提高學(xué)生用規(guī)范的數(shù)學(xué)語(yǔ)言表達(dá)論證過(guò)程的能力.3.情感價(jià)值觀要求通過(guò)積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),對(duì)數(shù)學(xué)的證明產(chǎn)生好奇心和求知欲,培養(yǎng)學(xué)生合作交流的能力,以及獨(dú)立思考的良好學(xué)習(xí)習(xí)慣.重點(diǎn):通過(guò)例題的講解和課堂練習(xí)對(duì)所學(xué)知識(shí)進(jìn)行復(fù)習(xí)鞏固難點(diǎn):本章知識(shí)的綜合性應(yīng)用?!練w納總結(jié)】(1) 定義: 三條邊都相等 的三角形是等邊三角形。(2)性質(zhì):①三個(gè)內(nèi)角都等于60度,三條邊都相等②具有等腰三角形的一切性質(zhì)。
教學(xué)效果:部分學(xué)生能舉一反三,較好地掌握分式方程及其應(yīng)用題的有關(guān)知識(shí)與解決生活中的實(shí)際問(wèn)題等基本技能.第六環(huán)節(jié) 課后練習(xí)四、教學(xué)反思數(shù)學(xué)來(lái)源于生活,并應(yīng)用于生活,讓學(xué)生用數(shù)學(xué)的眼光觀察生活,除了用所學(xué)的數(shù)學(xué)知識(shí)解決一些生活問(wèn)題外,還可以從數(shù)學(xué)的角度來(lái)解釋生活中的一些現(xiàn)象,面向生活是學(xué)生發(fā)展的“源頭活水”.在解決實(shí)際生活問(wèn)題的實(shí)例選擇上,我們盡量選擇學(xué)生熟悉的實(shí)例,如:學(xué)生身邊的事,購(gòu)物,農(nóng)業(yè),工業(yè)等方面,讓學(xué)生真切地理解數(shù)學(xué)來(lái)源于生活這一事實(shí)。有些學(xué)生對(duì)應(yīng)用題有一種心有余悸的感覺(jué),其關(guān)鍵是面對(duì)應(yīng)用題不知怎樣分析、怎樣找到等量關(guān)系。在教學(xué)中,如果采用列表的方法可幫助學(xué)生審題、找到等量關(guān)系,從而學(xué)會(huì)分析問(wèn)題??赡軐W(xué)生最初并不適應(yīng)這種做法,可采用分步走的方法,首先,讓學(xué)生從一些簡(jiǎn)單、類(lèi)似的問(wèn)題中模仿老師的分析方法,然后在練習(xí)中讓學(xué)生悟出解決問(wèn)題的竅門(mén),學(xué)會(huì)舉一反三,最后達(dá)到能獨(dú)立解決問(wèn)題的目的。
2.如何找一條線段的黃金分割點(diǎn),以及會(huì)畫(huà)黃金矩形.3.能根據(jù)定義判斷某一點(diǎn)是否為一條線段的黃金分割點(diǎn).Ⅳ.課后作業(yè)習(xí)題4.8Ⅴ.活動(dòng)與探究要配制一種新農(nóng)藥,需要兌水稀釋?zhuān)瑑抖嗌俨藕媚??太濃太稀都不?什么比例最合適,要通過(guò)試驗(yàn)來(lái)確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個(gè)端點(diǎn),選擇AB的黃金分割點(diǎn)C作為第一個(gè)試驗(yàn)點(diǎn),C點(diǎn)的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗(yàn)的結(jié)果,如果按1618倍,水兌得過(guò)多,稀釋效果不理想,可以進(jìn)行第二次試 驗(yàn).這次的試驗(yàn)點(diǎn)應(yīng)該選AC的黃金分割點(diǎn)D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點(diǎn)還不理想,可以按黃金分割的方法繼續(xù)試驗(yàn)下去.如果太濃,可以選DC之間的黃金分割 點(diǎn) ;如果太稀,可以選AD之間的黃金分割點(diǎn),用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進(jìn)行科學(xué)試驗(yàn),可以用最少的試驗(yàn)次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時(shí)間,也節(jié)約了原材料.●板書(shū)設(shè)計(jì)
若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當(dāng)a+b+c≠0時(shí),由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當(dāng)a+b+c=0時(shí),則有a+b=-c.此時(shí)k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯(cuò)提醒:運(yùn)用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯(cuò).本題題目中并沒(méi)有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯(cuò)誤是忽略討論a+b+c=0這種情況.三、板書(shū)設(shè)計(jì)比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過(guò)程,體會(huì)類(lèi)比的思想,提高學(xué)生探究、歸納的能力.通過(guò)問(wèn)題情境的創(chuàng)設(shè)和解決過(guò)程進(jìn)一步體會(huì)數(shù)學(xué)與生活的緊密聯(lián)系,體會(huì)數(shù)學(xué)的思維方式,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣.
解析:整個(gè)陰影部分比較復(fù)雜和分散,像此類(lèi)問(wèn)題通常使用割補(bǔ)法來(lái)計(jì)算.連接BD、AC,由正方形的對(duì)稱性可知,AC與BD必交于點(diǎn)O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至陰影部分②處,使整個(gè)陰影部分割補(bǔ)成半個(gè)正方形.解:如圖②,把陰影部分(Ⅰ)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結(jié):本題是利用旋轉(zhuǎn)的特征:旋轉(zhuǎn)前、后圖形的形狀和大小不變,把圖形利用割補(bǔ)法補(bǔ)全為一個(gè)面積可以計(jì)算的規(guī)則圖形.三、板書(shū)設(shè)計(jì)1.簡(jiǎn)單的旋轉(zhuǎn)作圖2.旋轉(zhuǎn)圖形的應(yīng)用教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、歸納和動(dòng)手操作,利用旋轉(zhuǎn)的性質(zhì)作圖.
方法總結(jié):垂徑定理雖是圓的知識(shí),但也不是孤立的,它常和三角形等知識(shí)綜合來(lái)解決問(wèn)題,我們一定要把知識(shí)融會(huì)貫通,在解決問(wèn)題時(shí)才能得心應(yīng)手.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第2題【類(lèi)型三】 動(dòng)點(diǎn)問(wèn)題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個(gè)動(dòng)點(diǎn),求OP的長(zhǎng)度范圍.解析:當(dāng)點(diǎn)P處于弦AB的端點(diǎn)時(shí),OP最長(zhǎng),此時(shí)OP為半徑的長(zhǎng);當(dāng)OP⊥AB時(shí),OP最短,利用垂徑定理及勾股定理可求得此時(shí)OP的長(zhǎng).解:作直徑MN⊥弦AB,交AB于點(diǎn)D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長(zhǎng),∴OP的長(zhǎng)度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長(zhǎng)、最短時(shí)的情況,靈活利用垂徑定理求解.容易出錯(cuò)的地方是不能確定最值時(shí)的情況.
一、本章知識(shí)要點(diǎn): 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點(diǎn)又是理解本章知識(shí)的關(guān)鍵,而且也是本章知識(shí)的難點(diǎn)。如何解決這一關(guān)鍵問(wèn)題,教材采取了以下的教學(xué)步驟:1. 從實(shí)際中提出問(wèn)題,如修建揚(yáng)水站的實(shí)例,這一實(shí)例可歸結(jié)為已知RtΔ的一個(gè)銳角和斜邊求已知角的對(duì)邊的問(wèn)題。顯然用勾股定理和直角三角形兩個(gè)銳角互余中的邊與邊或角與角的關(guān)系無(wú)法解出了,因此需要進(jìn)一步來(lái)研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識(shí),以含30°、45°的直角三角形為例:揭示了直角三角形中一個(gè)銳角確定為30°時(shí),那么這角的對(duì)邊與斜邊之比就確定比值為1:2。
解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設(shè)BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結(jié):矩形的折疊問(wèn)題是常見(jiàn)的問(wèn)題,本題的易錯(cuò)點(diǎn)是對(duì)△BED是等腰三角形認(rèn)識(shí)不足,解題的關(guān)鍵是對(duì)折疊后的幾何形狀要有一個(gè)正確的分析.三、板書(shū)設(shè)計(jì)矩形矩形的定義:有一個(gè)角是直角的平行四邊形 叫做矩形矩形的性質(zhì)四個(gè)角都是直角兩組對(duì)邊分別平行且相等對(duì)角線互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過(guò)程,把握平行四邊形的演變過(guò)程,遷移到矩形的概念與性質(zhì)上來(lái),明確矩形是特殊的平行四邊形.培養(yǎng)學(xué)生的推理能力以及自主合作精神,掌握幾何思維方法,體會(huì)邏輯推理的思維價(jià)值.
2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長(zhǎng)CD到點(diǎn)E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說(shuō)明理由。答案:四邊形ACBE是矩形.因?yàn)镃D是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因?yàn)镈E=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對(duì)角線相等且互相平分的四邊形是矩形)。四、課堂檢測(cè):1.下列說(shuō)法正確的是( )A.有一組對(duì)角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對(duì)角線互相平分的四邊形是矩形 D.對(duì)角互補(bǔ)的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說(shuō)法是否正確(1)有一個(gè)角是直角的四邊形是矩形 ( )(2)四個(gè)角都是直角的四邊形是矩形 ( )(3)四個(gè)角都相等的四邊形是矩形 ( ) (4)對(duì)角線相等的四邊形是矩形 ( )(5)對(duì)角線相等且互相垂直的四邊形是矩形 ( )(6)對(duì)角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請(qǐng)?jiān)偬砑右粋€(gè)條件,使四邊形ABCD是矩形.你添加的條件是 .(寫(xiě)出一種即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當(dāng)△ABC滿足AB=AC時(shí),四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結(jié):本題綜合考查了矩形和全等三角形的判定方法,明確有一個(gè)角是直角的平行四邊形是矩形是解本題的關(guān)鍵.三、板書(shū)設(shè)計(jì)矩形的判定對(duì)角線相等的平行四邊形是矩形三個(gè)角是直角的四邊形是矩形有一個(gè)角是直角的平行四邊形是矩形(定義)通過(guò)探索與交流,得出矩形的判定定理,使學(xué)生親身經(jīng)歷知識(shí)的發(fā)生過(guò)程,并會(huì)運(yùn)用定理解決相關(guān)問(wèn)題.通過(guò)開(kāi)放式命題,嘗試從不同角度尋求解決問(wèn)題的方法.通過(guò)動(dòng)手實(shí)踐、合作探索、小組交流,培養(yǎng)學(xué)生的邏輯推理能力.
1. _____________________________________________2. _____________________________________________你會(huì)計(jì)算菱形的周長(zhǎng)嗎?三、例題精講例1.課本3頁(yè)例1例2.已知:在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E、F、G、H分別是菱形ABCD各邊的中點(diǎn),求證:OE=OF=OG=OH.四、課堂檢測(cè):1.已知四邊形ABCD是菱形,O是兩條對(duì)角線的交點(diǎn),AC=8cm,DB=6cm,菱形的邊長(zhǎng)是________cm.2.菱形ABCD的周長(zhǎng)為40cm,兩條對(duì)角線AC:BD=4:3,那么對(duì)角線AC=______cm,BD=______cm.3.若菱形的邊長(zhǎng)等于一條對(duì)角線的長(zhǎng),則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對(duì)角線長(zhǎng)為12厘米,則別一條對(duì)角線長(zhǎng)為_(kāi)_______厘米.5.菱形的兩條對(duì)角線把菱形分成全等的直角三角形的個(gè)數(shù)是( ).(A)1個(gè) (B)2個(gè) (C)3個(gè) (D)4個(gè)6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長(zhǎng)和面積
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點(diǎn),∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長(zhǎng)為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個(gè)四邊形是菱形時(shí),要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個(gè)四邊形是平行四邊形,然后用定義法或判定定理1來(lái)證明菱形.三、板書(shū)設(shè)計(jì)菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對(duì)角線互相垂直的平行四邊形是菱形對(duì)角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過(guò)程,進(jìn)一步提高學(xué)生的推理論證能力,體會(huì)證明過(guò)程中所運(yùn)用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力及邏輯思維能力.
(2)相似多邊形的對(duì)應(yīng)邊的比稱為相似比;(3)當(dāng)相似比為1時(shí),兩個(gè)多邊形全等.二、運(yùn)用相似多邊形的性質(zhì).活動(dòng)3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長(zhǎng)度 .27.1-6教師活動(dòng):教師出示例題,提出問(wèn)題;學(xué)生活動(dòng):學(xué)生通過(guò)例題運(yùn)用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長(zhǎng)度 .(2人板演)活動(dòng)41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實(shí)際距離.2.如圖所示的兩個(gè)直角三角形相似嗎?為什么?3.如圖所示的兩個(gè)五邊形相似,求未知邊 、 、 、 的長(zhǎng)度.教師活動(dòng):在活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生參與活動(dòng)的熱情及語(yǔ)言歸納數(shù)學(xué)結(jié)論的能力;(2)學(xué)生對(duì)于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談?wù)劚竟?jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁(yè)習(xí)題4.4
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問(wèn)題的結(jié)論有兩種可能,所以具有開(kāi)放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時(shí),tanA>1.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類(lèi)型四】 與三角函數(shù)有關(guān)的探究性問(wèn)題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.