(一)抓好年度造林綠化工作。全面推進林業(yè)增綠增效工程,定期督導工程實施情況,適時組織開展項目驗收工作,10月份全面完成人工造林2300畝,省級封山育林1.8萬畝,省級退化林修復1.3萬畝,森林撫育1.1萬畝等項目。(二)推進森林督查圖斑整改工作。開展2024年第二期169個圖斑開展自查、研判工作,并按照上級部門要求上報自查成果,同時完成問題圖斑的查處整改工作。(三)強化森林防火基礎(chǔ)設(shè)施建設(shè)。適時開展森林防火百日攻堅活動,持續(xù)推進重點區(qū)域森林防火基礎(chǔ)設(shè)施建設(shè)項目,不斷優(yōu)化森林防火監(jiān)控預(yù)警系統(tǒng),進一步完善應(yīng)急指揮體系和補充急需物資裝備,配置森林防火無人機巡檢系統(tǒng)2套,購置15萬元防火物資裝備,計劃建設(shè)無人機機場7座,補充專業(yè)防火隊員10人,爭取省、市防火專項資金用于各鎮(zhèn)建設(shè)防火通道、蓄水池等基礎(chǔ)設(shè)施。
六、“保護呼倫湖助力美麗呼倫貝爾市”生態(tài)文明踐行活動為持續(xù)做好呼倫湖流域的生態(tài)環(huán)境保護治理工作。XX組織開展“保護呼倫湖助力美麗呼倫貝爾”生態(tài)文明實踐行動。此次全旗共有600余名干部職工統(tǒng)一行動,對呼倫湖流域XX境內(nèi)生產(chǎn)生活垃圾、建筑垃圾及廢棄網(wǎng)圍欄進行了集中清理,清掃垃圾500余袋,使呼倫湖及周邊地區(qū)環(huán)境得到了明顯改善。2024年下半年工作計劃1、為農(nóng)機安全生產(chǎn)打基礎(chǔ),舉辦農(nóng)機駕駛員培訓班。2、以人為本推進科技興牧,組織農(nóng)牧民參加高素質(zhì)牧民培訓班。3、增強基層科技技術(shù)力量,組織基層農(nóng)技人員下鄉(xiāng)開展教育培訓。4、加強科技知識宣傳、培訓,發(fā)揮好科技特派員服務(wù)農(nóng)牧民作用。5、認真落實農(nóng)機構(gòu)置補貼項目資金,規(guī)范操作嚴格管理。6、嚴格農(nóng)機牌、證、照管理,杜絕無證駕駛,確保農(nóng)機安全生產(chǎn)。7、完成上級交辦的其他工作。
A.城鎮(zhèn)數(shù)量猛增B.城市規(guī)模不斷擴大【設(shè)計意圖】通過讀圖的對比分析,提高學生提取信息以及對比分析問題的能力,通過小組之間的討論,培養(yǎng)合作能力。五、課堂小結(jié)和布置作業(yè)關(guān)于課堂小結(jié),我打算讓學生自己來總結(jié),你這節(jié)課學到了什么。這樣既可以提高學生的總結(jié)概括能力,也可以讓我在第一時間內(nèi)獲得它們的學習反饋。(本節(jié)課主要學習了珠三角的位置和范圍以及改革開放以來珠三角地區(qū)工業(yè)化和城市化的發(fā)展。)關(guān)于作業(yè)的布置,我打算采用分層次布置作業(yè)法。第一個層次的作業(yè)是基礎(chǔ)作業(yè),要求每一位同學都掌握,第二個層次的作業(yè)是彈性作業(yè),學生可以根據(jù)自己的情況來選做。整個這堂課,老師只是作為一個引導者、組織者的角色,學生才是課堂上真正的主人,是自我意義的建構(gòu)者和知識的生成者,被動的、復制式的課堂將離我們遠去。
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學生總結(jié)本節(jié)課所學主要知識及解題技巧
本課是高中數(shù)學第一章第4節(jié),充要條件是中學數(shù)學中最重要的數(shù)學概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學學習特別是數(shù)學推理的學習打下基礎(chǔ)。從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學成為中學數(shù)學的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學習,使學生明白對條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學生思維能力的嚴密性品質(zhì).
(六)說教學策略1.專題性海量的媒介信息必須加以選擇或者整合,以項目為依據(jù),進行信息篩選,形成專題性閱讀與交流;培養(yǎng)學生對文本信息“化零為整”的能力,提升跨媒介閱讀與交流學習的充實感。2.情境化情境教學應(yīng)指向?qū)W生的應(yīng)用,建構(gòu)富有符合時代氣息的內(nèi)容,與生活經(jīng)驗更加貼合,對學生的語言建構(gòu)與運用有所提升,在情境中能夠有效地進行交流。3.任務(wù)化以任務(wù)為導向的序列化學習,可以為學生構(gòu)建學習路線圖、學習框架等具體任務(wù)引導;或以跨媒介的認識與應(yīng)用為任務(wù)的設(shè)置引導;甚至以閱讀和交流作為序列化安排的實踐引導。4.整合性跨媒介閱讀與交流是結(jié)合線上線下的資源,形成新的“超媒介”,也能實現(xiàn)對信息進行“深加工”,多種媒介的信息整合只為一個核心教學內(nèi)容服務(wù)。5.互文性語言文字是語文之生命,我們是立足于語言文字的探討,音樂、圖像、視頻等文本與傳統(tǒng)語言文字文本形成互文,觸發(fā)學生對學習內(nèi)容立體化和具體化的感悟,提升學生的審美能力。
等式性質(zhì)與不等式性質(zhì)是高中數(shù)學的主要內(nèi)容之一,在高中數(shù)學中占有重要地位,它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應(yīng),有著重要的實際意義.同時等式性質(zhì)與不等式性質(zhì)也為學生以后順利學習基本不等式起到重要的鋪墊.課程目標1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數(shù)的大?。?3. 通過教學培養(yǎng)學生合作交流的意識和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學學科素養(yǎng)1.數(shù)學抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學運算:比較多項式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學建模:運用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。
1.探究:根據(jù)基本事實的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個平面,由此可以想到,如果一個平面內(nèi)有兩條相交或平行直線都與另一個平面平行,是否就能使這兩個平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個平面內(nèi)有兩條平行直線與另一個平面平行,這兩個平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內(nèi)畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個平面內(nèi)有兩條相交直線與另一個平面平行,這兩個平面是平行的,如圖,平面ABCD內(nèi)兩條相交直線A’C’,B’D’平行。
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細繩緊貼墻面,工人師傅被認為墻面垂直于地面,否則他就認為墻面不垂直于地面,這種方法說明了什么道理?
本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1》5.6.2節(jié) 函數(shù)y=Asin(ωx+φ)的圖象通過圖象變換,揭示參數(shù)φ、ω、A變化時對函數(shù)圖象的形狀和位置的影響。通過引導學生對函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律的探索,讓學生體會到由簡單到復雜、由特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點的突破,讓學生學會抓住問題的主要矛盾來解決問題的基本思想方法;通過對參數(shù)φ、ω、A的分類討論,讓學生深刻認識圖象變換與函數(shù)解析式變換的內(nèi)在聯(lián)系。通過圖象變換和“五點”作圖法,正確找出函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律,這也是本節(jié)課的重點所在。提高學生的推理能力。讓學生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理、數(shù)學建模的核心素養(yǎng)。
(4)“不論m取何實數(shù),方程x2+2x-m=0都有實數(shù)根”是全稱量詞命題,其否定為“存在實數(shù)m0,使得方程x2+2x-m0=0沒有實數(shù)根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應(yīng)結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結(jié)論.(2)對于省略量詞的命題,應(yīng)先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內(nèi)總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號語言:任意a?α,都有l(wèi)⊥a?l⊥α.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內(nèi)總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.
6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點.若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點O,連接OE,OF,如圖。∵E,F分別是AB,CD的中點,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當∠EOF=60°時,EF=OE=OF=1,當∠EOF=120°時,取EF的中點M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
活動目標:1、嘗試運用序數(shù)的經(jīng)驗尋找座位。2、在游戲情境中,積累看電影的相關(guān)經(jīng)驗。 活動設(shè)計:(一)導入:今天,我想邀請你們一起去小劇場看電影。1、交流看電影的經(jīng)驗。2、電影院的座位可以隨便坐嗎?為什么?小結(jié):電影院的座位都是有規(guī)定的,要根據(jù)電影票上的數(shù)字找座位,前面的數(shù)字表示第幾排,后面的數(shù)字表示第幾個座位,每張電影票一個位置。(二)找座位:1、發(fā)電影票:看看電影票上有什么?2、看看小劇場有幾排座位?3、找找你的座位在哪一排?第幾個?4、檢票:驗證幼兒的座位,解決幼兒出現(xiàn)的問題。
本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標1、能夠推導出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關(guān)的化簡、求值、證明問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學建模:學生體會到一般與特殊,換元等數(shù)學思想在三角恒等變換中的作用。.
新知講授(一)——隨機試驗 我們把對隨機現(xiàn)象的實現(xiàn)和對它的觀察稱為隨機試驗,簡稱試驗,常用字母E表示。我們通常研究以下特點的隨機試驗:(1)試驗可以在相同條件下重復進行;(2)試驗的所有可能結(jié)果是明確可知的,并且不止一個;(3)每次試驗總是恰好出現(xiàn)這些可能結(jié)果中的一個,但事先不確定出現(xiàn)哪個結(jié)果。新知講授(二)——樣本空間思考一:體育彩票搖獎時,將10個質(zhì)地和大小完全相同、分別標號0,1,2,...,9的球放入搖獎器中,經(jīng)過充分攪拌后搖出一個球,觀察這個球的號碼。這個隨機試驗共有多少個可能結(jié)果?如何表示這些結(jié)果?根據(jù)球的號碼,共有10種可能結(jié)果。如果用m表示“搖出的球的號碼為m”這一結(jié)果,那么所有可能結(jié)果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機試驗E的每個可能的基本結(jié)果稱為樣本點,全體樣本點的集合稱為試驗E的樣本空間。
本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導,運用誘導公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理、數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.了解兩角差的余弦公式的推導過程.2.掌握由兩角差的余弦公式推導出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學生數(shù)形結(jié)合和類比的思想方法。 a.數(shù)學抽象:公式的推導;b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學運算:運用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導;e.數(shù)學建模:公式的靈活運用;
⒈人員構(gòu)成及務(wù)工地點分布狀況 據(jù)初步普查結(jié)果表明,截止今年2月底,全縣外出務(wù)工人員總數(shù)為168475人,其中:男性115345人,占68.5%,女性53130人,占31.5%。主要務(wù)工地集中在“長三角”、“珠三角”沿海發(fā)達地區(qū)和京津唐經(jīng)濟圈,分布在本省和其它省區(qū)僅占25%左右。 從行業(yè)分布看,建筑裝修行業(yè)占38%,進企業(yè)務(wù)工占32%,商業(yè)貿(mào)易、餐飲服務(wù)及其它行業(yè)分別各占10%。其中,在民營、私企的占75%,外資企業(yè)的占20%,在國有、集體企業(yè)或出國務(wù)工者總數(shù)占5%。職業(yè)主要以簡單和重復勞動為主,大部分是從事一線的普通工和輔助工。從年齡結(jié)構(gòu)上看,35歲以下的占79.09%,36歲—45歲的占19.73%,46歲以上的占1.18%。從文化層次上看,小學及以下文化程度占11.25%,初中占52.6%,高中(含中專)占25.4%,大專及以上文化程度占10.75%。
⒈人員構(gòu)成及務(wù)工地點分布狀況 據(jù)初步普查結(jié)果表明,截止今年2月底,全縣外出務(wù)工人員總數(shù)為168475人,其中:男性115345人,占68.5%,女性53130人,占31.5%。主要務(wù)工地集中在“長三角”、“珠三角”沿海發(fā)達地區(qū)和京津唐經(jīng)濟圈,分布在本省和其它省區(qū)僅占25%左右?! 男袠I(yè)分布看,建筑裝修行業(yè)占38%,進企業(yè)務(wù)工占32%,商業(yè)貿(mào)易、餐飲服務(wù)及其它行業(yè)分別各占10%。其中,在民營、私企的占75%,外資企業(yè)的占20%,在國有、集體企業(yè)或出國務(wù)工者總數(shù)占5%。職業(yè)主要以簡單和重復勞動為主,大部分是從事一線的普通工和輔助工。從年齡結(jié)構(gòu)上看,35歲以下的占79.09%,36歲—45歲的占19.73%,46歲以上的占1.18%。從文化層次上看,小學及以下文化程度占11.25%,初中占52.6%,高中(含中專)占25.4%,大專及以上文化程度占10.75%。