回答“朝聞道夕死可矣”是哪位古人的名言,和我校的校園文化有何歷史淵源?同學(xué)們異口同聲地回答是“孔子”,并有自豪的表情。我感到本節(jié)課達(dá)到了預(yù)期效果。二、本節(jié)課的一些特點(diǎn)和成功之處:1、 從重知識的傳授轉(zhuǎn)向重能力的培養(yǎng)。注重了培養(yǎng)學(xué)生的想象能力、善于發(fā)現(xiàn)、觀察和審視美的能力、注重培養(yǎng)學(xué)生的質(zhì)疑能力、以及類比推理能力。2、 注重物理課程的校本化、注重學(xué)科與校園文化、中國古代文化相融合。將屈原、孔子等人的思想與本節(jié)課所提倡的科學(xué)精神進(jìn)行了恰當(dāng)?shù)穆?lián)系。將中國古代樸素的時(shí)空觀如“天上一日,地上一年”、大家耳熟能詳?shù)摹耙晃m映世界、一剎那含永遠(yuǎn)”等思想與愛因斯坦的“相對論”進(jìn)行了類比。將中國古代的“太極圖”與哈勃望遠(yuǎn)鏡拍攝的“渦旋星系”作類比,這不但能激發(fā)學(xué)生的想象力、類比能力,還能增強(qiáng)民族自豪感和對學(xué)校的熱愛。
一、 教材分析與學(xué)情分析教材分析人民教育出版社普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書必修2第七章第九節(jié)。本節(jié)內(nèi)容安排在學(xué)習(xí)機(jī)械能守恒定律之后的目的,是為了使學(xué)生在理論上對機(jī)械能守恒定律有所了解的基礎(chǔ)上,通過實(shí)驗(yàn)測量及對實(shí)驗(yàn)數(shù)據(jù)的分析處理,對機(jī)械能守恒定律及條件有深刻的認(rèn)識。學(xué)情分析知識層面:學(xué)生已經(jīng)掌握了動(dòng)能、重力勢能等概念以及動(dòng)能定理、機(jī)械能守恒定律等定理、定律;知道功是能量轉(zhuǎn)換的量度以及機(jī)械能守恒的條件。能力層面:學(xué)生已具備一定的實(shí)驗(yàn)操作技能,會(huì)用打點(diǎn)計(jì)時(shí)器以及直尺等實(shí)驗(yàn)儀器。具備一定的數(shù)據(jù)處理能力。二、教學(xué)目標(biāo)與重點(diǎn)、難點(diǎn)教學(xué)目標(biāo)知識與技能:1、會(huì)用打點(diǎn)計(jì)時(shí)器打下的紙帶計(jì)算物體運(yùn)動(dòng)的速度。2、掌握驗(yàn)證機(jī)械能守恒定律的實(shí)驗(yàn)原理。
d.某物體沿直線向東運(yùn)動(dòng),原來的速度是5m/s,2s后速度減小到3m/s,求2s內(nèi)物體速度變化。④如何探究物體作勻速圓周運(yùn)動(dòng)時(shí),在Δt時(shí)間內(nèi)的速度變化?分析:有了同一直線上速度變化的鋪墊后,討論物體做勻速圓周運(yùn)動(dòng)速度的變化就比較自然了,為了給向心加速度方向的學(xué)習(xí)打好基礎(chǔ),可以通過小組協(xié)作,進(jìn)一步完成下列思考題,使同學(xué)們認(rèn)識到:時(shí)間間隔起短,速度變化的方向起接近半徑方向。(多媒體屏幕投影)a.物體沿半徑為1m的軌道做勻速圓周運(yùn)動(dòng),線速度大小為,求1s內(nèi)物體速度變化并畫出1s內(nèi)速度變化的示意圖。b.分別求出上題中物體在0.5s、0.25s內(nèi)速度變化并畫出相應(yīng)的示意圖。由于沒有辦法直接利用實(shí)驗(yàn)來驗(yàn)證速度變化的方向,所以,我們采用提供思考題的方法,引導(dǎo)同學(xué)在合作學(xué)習(xí)、自主探究中完成。有了速度變化的研究為鋪墊,加速度的方向問題就迎刃而解了。
一、教材分析行星的運(yùn)動(dòng)選自人教版普通高中物理必修2第六章第1節(jié)。本節(jié)教學(xué)既是前面《運(yùn)動(dòng)的描述》和《曲線運(yùn)動(dòng)》內(nèi)容的進(jìn)一步的延伸和拓展,又能為后面學(xué)習(xí)萬有引力定律做鋪墊。在本章中占有較為重要的地位,具有承前啟后的作用。同時(shí)該節(jié)內(nèi)容也涉及大量物理史實(shí)、貼近學(xué)生生活和聯(lián)系社會(huì)實(shí)際的事實(shí),可進(jìn)一步培育學(xué)生的科學(xué)情感、精神和發(fā)展觀。(一)教學(xué)目標(biāo) 1.知識與技能(1)知道地心說和日心說的基本內(nèi)容。(2.)掌握理解開普勒三大定律的內(nèi)容,并能應(yīng)用。(3)理解人們對行星運(yùn)動(dòng)的認(rèn)識過程是漫長復(fù)雜的,真理是來之不易的。2.過程與方法通過托勒密、哥白尼、第谷·布拉赫、開普勒等幾位科學(xué)家對行星運(yùn)動(dòng)的不同認(rèn)識,了解人類認(rèn)識事物本質(zhì)的曲折性并加深對行星運(yùn)動(dòng)的理解。3.情感、態(tài)度與價(jià)值觀(1)澄清對天體運(yùn)動(dòng)神秘、模糊的認(rèn)識,掌握人類認(rèn)識自然規(guī)律的科學(xué)方法。(2)感悟科學(xué)是人類進(jìn)步不竭的動(dòng)力。
二、說學(xué)生本屆高一學(xué)生經(jīng)過了三年初中課改,在心理上,他們渴望表現(xiàn)的欲望和自主探究的欲望比較強(qiáng)烈,對有興趣的知識表現(xiàn)出高度地?zé)崆椋⒕哂幸欢ǖ膱F(tuán)結(jié)協(xié)作能力,但還是應(yīng)該正視一個(gè)并不樂觀的現(xiàn)實(shí)——在寫作方面,學(xué)生知識還停留在簡單的記敘及表達(dá)方式綜合運(yùn)用上,至于巧妙構(gòu)思、謀篇布局很是空白。即便已經(jīng)經(jīng)過高中一個(gè)學(xué)期的學(xué)習(xí),但還是有大部分學(xué)生依然基礎(chǔ)較為薄弱,甚至出現(xiàn)不知從何下筆的現(xiàn)象。三、說教法與學(xué)法“老師搭臺(tái),學(xué)生唱戲”1、教法:本課將安排兩課時(shí)(一課時(shí)學(xué)習(xí)一課時(shí)練筆),采用 PPT 多媒體課件教學(xué),嘗試用角色扮演法、圖片展示法和多媒體教學(xué)等方法,教學(xué)中應(yīng)該重視學(xué)生的參與性和探究性。2、學(xué)法:學(xué)生應(yīng)該充分利用多角度創(chuàng)設(shè)的學(xué)習(xí)情境來激發(fā)自身學(xué)習(xí)的興趣和熱情,分組討論,小組互助等形式讓學(xué)生積極自主參與、進(jìn)行問題探究學(xué)習(xí)。理論依據(jù):建構(gòu)主義理論“學(xué)生是學(xué)習(xí)的中心”的闡釋,教師應(yīng)該做學(xué)生主動(dòng)建構(gòu)意義的幫助者、促進(jìn)者。
在學(xué)習(xí)語文經(jīng)驗(yàn)交流會(huì)上,季老師舉著我的《采花釀蜜集》,對大家說:“人日積月累辛勤采擷,終于釀出了知識的瓊漿。大家都應(yīng)這樣,爭做知識的富戶??!”老師有點(diǎn)激動(dòng),低低地爬在鼻梁上的眼鏡突然滑了下來,正好落在那集子上。大家笑了,季老師也笑了。就這樣,我的寫作有了進(jìn)步,好幾篇作文登上了班級《學(xué)作園地》。從此,我愛上了語文,更深深地愛上了季老師。高中升學(xué)考前那個(gè)星期天的夜晚,季老師舊病復(fù)發(fā),累倒了。半夜,老師們把他送進(jìn)了公社衛(wèi)生院。第二天,同學(xué)們都悄悄去衛(wèi)生院看望。我去的時(shí)候,季老師正在掛滴流??墒?,下午季老師又出現(xiàn)在講臺(tái)上,他臉色憔悴,聲音沙啞……我手捧《采花釀蜜集》走近季老師,思緒的溪水從遠(yuǎn)方流了回來?!凹纠蠋煛保野驯咀优踅o老師,深情地叫了聲。季老師接過本子,仔細(xì)翻閱著,臉上露出了笑容,像是聞到了郁郁芳香的蜜汁似的?!斑M(jìn)步不小呀!”季老師說著,又在本子扉頁上題了
本來比較速度變化的快慢也有兩種方法:一種是比較相同時(shí)間內(nèi)速度變化量的大?。涣硪环N是比較發(fā)生相同的速度變化所需要的時(shí)間長短。但教材是將比較質(zhì)點(diǎn)位置移動(dòng)快慢的思想直接遷移過來,通過實(shí)例分析,使學(xué)生明白不同運(yùn)動(dòng)物體的速度變化快慢不同,表現(xiàn)在速度的變化與發(fā)生這個(gè)變化所用時(shí)間的比值不同,從而引入加速度的定義方法a=△v/△t。加速度表示速度的變化快慢,包括速度增加的快慢和減小的快慢,不能誤認(rèn)為只要有加速度的運(yùn)動(dòng)速度就一定是增加的。廣義地講,加速度不僅可以描述速度大小的變化快慢,而且也可以描述速度方向變化的快慢,本節(jié)教材只限定在直線運(yùn)動(dòng)的情景中討論。加速度的矢量性是一個(gè)難點(diǎn),教材是以與速度方向相同或是相反來表述加速度的矢量性的。如果以初速度方向?yàn)檎较?,那么加速度就有正?fù)之分,加速度的正負(fù)表示加速度的方向,不表示加速度的大小。
(三)合作交流能力提升教師:剛才我們通過實(shí)驗(yàn)了解了小車的速度是怎樣隨時(shí)間變化的,但實(shí)驗(yàn)中有一定的誤差,請同學(xué)們討論并說出可能存在哪些誤差,造成誤差的原因是什么?(每個(gè)實(shí)驗(yàn)小組的同學(xué)之間進(jìn)行熱烈的討論)學(xué)生:測量出現(xiàn)誤差。因?yàn)辄c(diǎn)間距離太小,測量長度時(shí)容易產(chǎn)生誤差。教師:如何減小這個(gè)誤差呢?學(xué)生:如果測量較長的距離,誤差應(yīng)該小一些。教師:應(yīng)該采取什么辦法?學(xué)生:應(yīng)該取幾個(gè)點(diǎn)之間的距離作為一個(gè)測量長度。教師:好,這就是常用的取“計(jì)數(shù)點(diǎn)”的方法。我們應(yīng)該在紙帶上每隔幾個(gè)計(jì)時(shí)點(diǎn)取作一個(gè)計(jì)數(shù)點(diǎn),進(jìn)行編號。分別標(biāo)為:0、1、2、3……,測各計(jì)數(shù)點(diǎn)到“0”的距離。以減小測量誤差。教師:還有補(bǔ)充嗎?學(xué)生1:我在坐標(biāo)系中描點(diǎn)畫的圖象只集中在坐標(biāo)原定附近,兩條圖象沒有明顯的分開。學(xué)生2:描出的幾個(gè)點(diǎn)不嚴(yán)格的分布在一條直線上,還能畫直線嗎?
1、《戰(zhàn)后資本主義世界經(jīng)濟(jì)體系的形成》是人教版高中歷史必修Ⅱ第八單元第22課,學(xué)時(shí)為1課時(shí)。《歷史必修Ⅱ》一書用古今貫通、中外關(guān)聯(lián)的八個(gè)專題來著重反映人類社會(huì)經(jīng)濟(jì)和社會(huì)生活領(lǐng)域發(fā)展進(jìn)程中的重要史實(shí)。從第一單元勾勒“古代中國經(jīng)濟(jì)的基本結(jié)構(gòu)與特點(diǎn)”再到第八單元“世界經(jīng)濟(jì)的全球化趨勢”,以歷史唯物主義觀點(diǎn)清晰闡明經(jīng)濟(jì)全球化是世界生產(chǎn)力發(fā)展的要求和結(jié)果,是不以人的意志為轉(zhuǎn)移的歷史必然趨勢。第八單元的標(biāo)題是《世界經(jīng)濟(jì)的全球化趨勢》,作為最后一單元,從內(nèi)容上講,有強(qiáng)烈的時(shí)代感和現(xiàn)實(shí)意義,是全書內(nèi)容的總結(jié)與升華展望。提起“全球化”這個(gè)十年前才首次出現(xiàn)在美國《商業(yè)周刊》的新名詞,如今卻是地球人都知道了。然而究竟什么是全球化?作為一歷史現(xiàn)象,全球化有其自身內(nèi)部嚴(yán)密完整的體系,其中核心之一便是制度、規(guī)則的全球化,而這正是本課內(nèi)容的著力點(diǎn)。
【課件展示】《秦朝中央集權(quán)制度的建立》《教材簡析》《教學(xué)目標(biāo)》《教法簡介》《教學(xué)過程設(shè)計(jì)及特色簡述》【師】本節(jié)內(nèi)容以秦代政治體制和官僚系統(tǒng)的建立為核心內(nèi)容,主要包括秦朝中央集權(quán)制的建立的背景、建立過程及影響。本節(jié)內(nèi)容在整個(gè)單元中起到承前啟后的作用,在整個(gè)模塊中也有相當(dāng)重要的地位。讓學(xué)生了解中國古代中央集權(quán)政治體制的初建對于理解我國古代政治制度的發(fā)展乃至我們今天的政治體制是十分必要的。 本堂課我采用多媒體和講授法及歷史辯論法相結(jié)合,通過巧妙設(shè)計(jì)問題情境,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,使學(xué)生主動(dòng)學(xué)習(xí),探究思考。教師引導(dǎo)和組織學(xué)生采取小組討論、情景體驗(yàn)等方式,達(dá)到教學(xué)目標(biāo)。 本節(jié)內(nèi)容分三個(gè)部分,下面首先看秦朝中央集權(quán)制度建立的前提即秦的統(tǒng)一
二、教學(xué)目標(biāo):1、知識與能力(1)了解我國古代冶金、制瓷、絲織業(yè)發(fā)展的基本情況;(2)了解中國古代手工業(yè)享譽(yù)世界的史實(shí),培養(yǎng)學(xué)生的民族自信心。2、過程與方法(1)通過大量的歷史圖片,指導(dǎo)學(xué)生欣賞一些精湛的手工業(yè)藝術(shù)品,提高學(xué)生探究古代手工業(yè)的興趣;(2)運(yùn)用歷史材料引導(dǎo)學(xué)生歸納古代手工業(yè)產(chǎn)品的基本特征。3、情感態(tài)度與價(jià)值觀:通過本課教學(xué),使學(xué)生充分地感受到我國古代人民的聰明與才智,認(rèn)識到古代許多手工業(yè)品具有較高的藝術(shù)價(jià)值,以及在世界上的領(lǐng)先地位和對世界文明的影響,增強(qiáng)民族自豪感。
情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個(gè)數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時(shí)的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個(gè)月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
新知探究我們知道,等差數(shù)列的特征是“從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運(yùn)算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時(shí)期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細(xì)菌每20 min 就通過分裂繁殖一代,那么一個(gè)這種細(xì)菌從第1次分裂開始,各次分裂產(chǎn)生的后代個(gè)數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
高斯(Gauss,1777-1855),德國數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過杰出貢獻(xiàn). 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實(shí)際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項(xiàng)的和問題.等差數(shù)列中,下標(biāo)和相等的兩項(xiàng)和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計(jì)算1+2+3+… +101嗎?問題3: 你能計(jì)算1+2+3+… +n嗎?需要對項(xiàng)數(shù)的奇偶進(jìn)行分類討論.當(dāng)n為偶數(shù)時(shí), S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時(shí), n-1為偶數(shù)
求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運(yùn)算特點(diǎn),即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)數(shù);(2)對于三個(gè)以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個(gè)”函數(shù)的積、商的導(dǎo)數(shù)計(jì)算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進(jìn)化費(fèi)用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費(fèi)用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時(shí),所需進(jìn)化費(fèi)用的瞬時(shí)變化率:(1) 90% ;(2) 98%解:凈化費(fèi)用的瞬時(shí)變化率就是凈化費(fèi)用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
新知探究前面我們研究了兩類變化率問題:一類是物理學(xué)中的問題,涉及平均速度和瞬時(shí)速度;另一類是幾何學(xué)中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學(xué)科領(lǐng)域,但在解決問題時(shí),都采用了由“平均變化率”逼近“瞬時(shí)變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時(shí), x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時(shí),平均變化率ΔyΔx無限趨近于一個(gè)確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個(gè)________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為__________),記作f ′(x0)或________,即
新知探究國際象棋起源于古代印度.相傳國王要獎(jiǎng)賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請?jiān)谄灞P的第1個(gè)格子里放上1顆麥粒,第2個(gè)格子里放上2顆麥粒,第3個(gè)格子里放上4顆麥粒,依次類推,每個(gè)格子里放的麥粒都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子.請給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國王覺得這個(gè)要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實(shí)現(xiàn)他的諾言.問題1:每個(gè)格子里放的麥粒數(shù)可以構(gòu)成一個(gè)數(shù)列,請判斷分析這個(gè)數(shù)列是否是等比數(shù)列?并寫出這個(gè)等比數(shù)列的通項(xiàng)公式.是等比數(shù)列,首項(xiàng)是1,公比是2,共64項(xiàng). 通項(xiàng)公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項(xiàng)公式和前n項(xiàng)和公式,并應(yīng)用它們解決實(shí)際問題和數(shù)學(xué)問題,從中感受數(shù)學(xué)模型的現(xiàn)實(shí)意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
1.判斷正誤(正確的打“√”,錯(cuò)誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線越“陡峭”. ( )(3)函數(shù)在某個(gè)區(qū)間上變化越快,函數(shù)在這個(gè)區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時(shí),在區(qū)間內(nèi)的個(gè)別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯(cuò)誤.(3)√ 函數(shù)在某個(gè)區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
四.設(shè)計(jì)反思我在設(shè)計(jì)本課時(shí),希望通過情境的創(chuàng)設(shè)充分再現(xiàn)歷史,并利用多媒體輔助教學(xué),破重點(diǎn)、化難點(diǎn),讓學(xué)生主動(dòng)參與到學(xué)習(xí)過程中,從而突破狹小的教室空間,讓學(xué)生真正做到感知?dú)v史,立足現(xiàn)實(shí),展望未來。自主,交流、合作、探究是課程改革中著力倡導(dǎo)的新型學(xué)習(xí)方式。課堂教學(xué)中如何開展小組合作的探究學(xué)習(xí)存在著很多困難,首先是課堂教學(xué)時(shí)間有限,如何體現(xiàn)面向全體,給每個(gè)學(xué)生以機(jī)會(huì)?再次,歷史問題的討論只能依托于史料才能使討論不淪為空談,課堂上通過網(wǎng)絡(luò)提供大量的史料(文字、圖片或其他),勢必不能有充分時(shí)間讓學(xué)生閱讀分析。如何解決這些問題呢?措施一:要形成較固定的歷史學(xué)習(xí)合作小組。選定一位同學(xué)擔(dān)任組長,負(fù)責(zé)協(xié)調(diào)措施二:要設(shè)置有利于學(xué)生探究的問題情境措施三:要把課堂教學(xué)與課外學(xué)習(xí)結(jié)合起來。在課前就印發(fā)相關(guān)的材料,或引導(dǎo)學(xué)生去查閱相關(guān)的資料,讓學(xué)生有個(gè)充分的閱讀、思考、交流的時(shí)間,是保證課堂上小組交流能成功實(shí)現(xiàn)的一個(gè)前提