2.能力目標(biāo):在活動中培養(yǎng)學(xué)生從具體到抽象,再從抽象回到具體的思維方法。培養(yǎng)觀察、操作、表達(dá)、思維能力與探索意識,發(fā)揮學(xué)生的想像力、創(chuàng)造力,激發(fā)學(xué)生的審美觀點(diǎn),培養(yǎng)學(xué)生創(chuàng)造美的能力。3.情感目標(biāo):讓學(xué)生在實(shí)際操作活動中體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣,鼓勵(lì)他們感受美、欣賞美、創(chuàng)造美,感悟數(shù)學(xué)知識的魅力,激發(fā)學(xué)生學(xué)好數(shù)學(xué)的欲望。教學(xué)重點(diǎn):認(rèn)識軸對稱圖形的基本特征,dj舞曲,會找對稱軸。三、教法學(xué)法1、在教法上,為了將課堂還給學(xué)生,讓課堂散發(fā)生活活力,營造學(xué)生在教學(xué)活動中獨(dú)立自主的學(xué)習(xí)時(shí)間和空間,使他們成為課堂教學(xué)過程中的參與者和創(chuàng)造者,本著這樣的知道思想,本節(jié)課我采用了多種教學(xué)方法相結(jié)合的方式,如:情境教學(xué)法、觀察比較法、引探教學(xué)法、遷移類推法等。通過教師適時(shí)的"引"來激發(fā)學(xué)生主動的"探",通過教師恰如其分的"放"來指導(dǎo)學(xué)生獨(dú)立自主的"學(xué)",使師聲雙邊產(chǎn)生共鳴和諧發(fā)展!
1、自主檢測現(xiàn)在我們要開始攀登主峰了,道路是崎嶇的,我相信同學(xué)們能夠克服重重困難登頂成功,只要細(xì)心,你就能行。學(xué)生獨(dú)立完成習(xí)題。2、評價(jià)完善一生匯報(bào)答案,其余自我核對,矯正錯(cuò)誤。(四)、歸納小結(jié) 課外延伸1、歸納小結(jié)這節(jié)課我們主要學(xué)習(xí)了什么內(nèi)容?你最大的收獲是什么?你覺得自己的表現(xiàn)怎么樣?教師適時(shí)的對學(xué)生的學(xué)習(xí)情況作以情感性和知識性評價(jià)。2、課外延伸課本第九頁思考練習(xí)。(設(shè)計(jì)意圖:讓學(xué)生總結(jié)所學(xué),在交流反思中,意識到學(xué)習(xí)方式的重要性和數(shù)學(xué)內(nèi)容的延續(xù)性,激發(fā)學(xué)生進(jìn)一步探究知識的欲望。讓學(xué)生把這節(jié)課的收獲和尚存在的疑問告訴小組的同伴,針對學(xué)生疑問采用生生交流,師生交流的形式給予解決,這樣不但使問題得以解決,還培養(yǎng)了學(xué)生的團(tuán)隊(duì)協(xié)助精神。)
學(xué)生總結(jié)得出:只有乘法和除法,都是按從左往右進(jìn)行計(jì)算的。這個(gè)環(huán)節(jié)的教學(xué),教師的“導(dǎo)”起著關(guān)鍵的作用,多媒體的展示也為學(xué)生的比較、分析、歸納出四則運(yùn)算的方法有一定的促進(jìn)作用。分散了教學(xué)的難度,挖掘了教材的深度,培養(yǎng)學(xué)生的發(fā)散思維。接著小結(jié)方法,教師:像我們以后遇到這樣的加減法計(jì)算或乘除法計(jì)算的時(shí)候,應(yīng)怎么樣計(jì)算呢?得出并板書:在沒有括號的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計(jì)算。3、鞏固練習(xí)教師課件出示:做一做讓學(xué)生獨(dú)立完成。再上臺板演,并說說解題的方法和計(jì)算步驟,4、回顧與小結(jié) 這節(jié)課你學(xué)會了什么知識?是怎么學(xué)的?又有什么收獲?七、板書設(shè)計(jì): 72-44+85 72+85-44 987÷3×6 6÷3×987 987×6÷3 =28+85 =157-44 =329×6 =2×987 =5922÷3 =113 =113 =1974 =1974 =1974 在沒有括號的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計(jì)算。
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因?yàn)閜是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實(shí)數(shù)a的取值范圍.【答案】見解析【解析】因?yàn)椤皒∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識及解題技巧
本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時(shí)間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時(shí)的知識儲備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個(gè)概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點(diǎn)之一,而必要條件的定義又是本節(jié)內(nèi)容的難點(diǎn).A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學(xué)習(xí),使學(xué)生明白對條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).
等式性質(zhì)與不等式性質(zhì)是高中數(shù)學(xué)的主要內(nèi)容之一,在高中數(shù)學(xué)中占有重要地位,它是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng),有著重要的實(shí)際意義.同時(shí)等式性質(zhì)與不等式性質(zhì)也為學(xué)生以后順利學(xué)習(xí)基本不等式起到重要的鋪墊.課程目標(biāo)1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運(yùn)用其解決簡單的問題.2. 進(jìn)一步掌握作差、作商、綜合法等比較法比較實(shí)數(shù)的大?。?3. 通過教學(xué)培養(yǎng)學(xué)生合作交流的意識和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學(xué)運(yùn)算:比較多項(xiàng)式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項(xiàng)式的取值范圍,許將單項(xiàng)式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學(xué)建模:運(yùn)用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。
本節(jié)是新人教A版高中數(shù)學(xué)必修1第1章第1節(jié)第3部分的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了集合的含義以及集合與集合之間的基本關(guān)系,這為學(xué)習(xí)本節(jié)內(nèi)容打下了基礎(chǔ)。本節(jié)內(nèi)容主要介紹集合的基本運(yùn)算一并集、交集、補(bǔ)集。是對集合基木知識的深入研究。在此,通過適當(dāng)?shù)膯栴}情境,使學(xué)生感受、認(rèn)識并掌握集合的三種基本運(yùn)算。本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用。本節(jié)內(nèi)容是高中數(shù)學(xué)的主要內(nèi)容,也是高考的對象,在實(shí)踐中應(yīng)用廣泛,是高中學(xué)生必須掌握的重點(diǎn)。A.理解兩個(gè)集合的并集與交集的含義,會求簡單集合的交、并運(yùn)算;B.理解補(bǔ)集的含義,會求給定子集的補(bǔ)集;C.能使用 圖表示集合的關(guān)系及運(yùn)算。 1.數(shù)學(xué)抽象:集合交集、并集、補(bǔ)集的含義;2.數(shù)學(xué)運(yùn)算:集合的運(yùn)算;3.直觀想象:用 圖、數(shù)軸表示集合的關(guān)系及運(yùn)算。
集合的基本運(yùn)算是人教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書,數(shù)學(xué)必修1第一章第三節(jié)的內(nèi)容. 在此之前,學(xué)生已學(xué)習(xí)了集合的含義以及集合與集合之間的基本關(guān)系,這為學(xué)習(xí)本節(jié)內(nèi)容打下了基礎(chǔ). 本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用. 本節(jié)內(nèi)容是高中數(shù)學(xué)的主要內(nèi)容,也是高考的對象,在實(shí)踐中應(yīng)用廣泛,是高中學(xué)生必須掌握的重點(diǎn).課程目標(biāo)1. 理解兩個(gè)集合的并集與交集的含義,能求兩個(gè)集合的并集與交集;2. 理解全集和補(bǔ)集的含義,能求給定集合的補(bǔ)集; 3. 能使用Venn圖表達(dá)集合的基本關(guān)系與基本運(yùn)算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:并集、交集、全集、補(bǔ)集含義的理解;2.邏輯推理:并集、交集及補(bǔ)集的性質(zhì)的推導(dǎo);3.數(shù)學(xué)運(yùn)算:求 兩個(gè)集合的并集、交集及補(bǔ)集,已知并集、交集及補(bǔ)集的性質(zhì)求參數(shù)(參數(shù)的范圍);4.數(shù)據(jù)分析:通過并集、交集及補(bǔ)集的性質(zhì)列不等式組,此過程中重點(diǎn)關(guān)注端點(diǎn)是否含“=”及?問題;
本節(jié)內(nèi)容來自人教版高中數(shù)學(xué)必修一第一章第一節(jié)集合第二課時(shí)的內(nèi)容。集合論是現(xiàn)代數(shù)學(xué)的一個(gè)重要基礎(chǔ),是一個(gè)具有獨(dú)特地位的數(shù)學(xué)分支。高中數(shù)學(xué)課程是將集合作為一種語言來學(xué)習(xí),在這里它是作為刻畫函數(shù)概念的基礎(chǔ)知識和必備工具。本小節(jié)內(nèi)容是在學(xué)習(xí)了集合的含義、集合的表示方法以及元素與集合的屬于關(guān)系的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)集合與集合之間的關(guān)系,同時(shí)也是下一節(jié)學(xué)習(xí)集合間的基本運(yùn)算的基礎(chǔ),因此本小節(jié)起著承上啟下的關(guān)鍵作用.通過本節(jié)內(nèi)容的學(xué)習(xí),可以進(jìn)一步幫助學(xué)生利用集合語言進(jìn)行交流的能力,幫助學(xué)生養(yǎng)成自主學(xué)習(xí)、合作交流、歸納總結(jié)的學(xué)習(xí)習(xí)慣,培養(yǎng)學(xué)生從具體到抽象、從一般到特殊的數(shù)學(xué)思維能力,通過Venn圖理解抽象概念,培養(yǎng)學(xué)生數(shù)形結(jié)合思想。
四、小結(jié)1.知識:如何采用兩角和或差的正余弦公式進(jìn)行合角,借助三角函數(shù)的相關(guān)性質(zhì)求值.其中三角函數(shù)最值問題是對三角函數(shù)的概念、圖像和性質(zhì),以及誘導(dǎo)公式、同角三角函數(shù)基本關(guān)系、和(差)角公式的綜合應(yīng)用,也是函數(shù)思想的具體體現(xiàn). 如何科學(xué)的把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,如何選擇自變量建立數(shù)學(xué)關(guān)系式;求解三角函數(shù)在某一區(qū)間的最值問題.2.思想:本節(jié)課通過由特殊到一般方式把關(guān)系式 化成 的形式,可以很好地培養(yǎng)學(xué)生探究、歸納、類比的能力. 通過探究如何選擇自變量建立數(shù)學(xué)關(guān)系式,可以很好地培養(yǎng)學(xué)生分析問題、解決問題的能力和應(yīng)用意識,進(jìn)一步培養(yǎng)學(xué)生的建模意識.五、作業(yè)1. 課時(shí)練 2. 預(yù)習(xí)下節(jié)課內(nèi)容學(xué)生根據(jù)課堂學(xué)習(xí),自主總結(jié)知識要點(diǎn),及運(yùn)用的思想方法。注意總結(jié)自己在學(xué)習(xí)中的易錯(cuò)點(diǎn);
第一節(jié)通過研究集合中元素的特點(diǎn)研究了元素與集合之間的關(guān)系及集合的表示方法,而本節(jié)重點(diǎn)通過研究元素得到兩個(gè)集合之間的關(guān)系,尤其學(xué)生學(xué)完兩個(gè)集合之間的關(guān)系后,一定讓學(xué)生明確元素與集合、集合與集合之間的區(qū)別。課程目標(biāo)1. 了解集合之間包含與相等的含義,能識別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達(dá)集合間的關(guān)系,體會直觀圖示對理解抽象概念的作用。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學(xué)運(yùn)算:由集合間的關(guān)系求參數(shù)的范圍,常見包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過集合關(guān)系列不等式組, 此過程中重點(diǎn)關(guān)注端點(diǎn)是否含“=”及 問題;5.數(shù)學(xué)建模:用集合思想對實(shí)際生活中的對象進(jìn)行判斷與歸類。
它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進(jìn)行求值、化簡、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運(yùn)算能力,但在數(shù)學(xué)的應(yīng)用意識與應(yīng)用能力方面尚需進(jìn)一步培養(yǎng).課程目標(biāo)1.能用二倍角公式推導(dǎo)出半角公式,體會三角恒等變換的基本思想方法,以及進(jìn)行簡單的應(yīng)用. 2.了解三角恒等變換的特點(diǎn)、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進(jìn)行三角函數(shù)式的化簡、求值以及證明,進(jìn)而進(jìn)行簡單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學(xué)運(yùn)算:三角函數(shù)式的求值.
(4)“不論m取何實(shí)數(shù),方程x2+2x-m=0都有實(shí)數(shù)根”是全稱量詞命題,其否定為“存在實(shí)數(shù)m0,使得方程x2+2x-m0=0沒有實(shí)數(shù)根”,它是真命題.解題技巧:(含有一個(gè)量詞的命題的否定方法)(1)一般地,寫含有一個(gè)量詞的命題的否定,首先要明確這個(gè)命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應(yīng)結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時(shí)否定結(jié)論.(2)對于省略量詞的命題,應(yīng)先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓(xùn)練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個(gè)實(shí)數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.
本節(jié)通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡單問題。課程目標(biāo)1.了解二分法的原理及其適用條件.2.掌握二分法的實(shí)施步驟.3.通過用二分法求方程的近似解,使學(xué)生體會函數(shù)零點(diǎn)與方程根之間的聯(lián)系,初步形成用函數(shù)觀點(diǎn)處理問題的意識.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點(diǎn)近似值的步驟;3.數(shù)學(xué)運(yùn)算:求函數(shù)零點(diǎn)近似值;4.數(shù)學(xué)建模:通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用.
《數(shù)學(xué)1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學(xué)生根據(jù)具體的函數(shù)圖象能夠借助計(jì)算機(jī)或信息技術(shù)工具計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數(shù)與方程之間的聯(lián)系;它既是本冊書中的重點(diǎn)內(nèi)容,又是對函數(shù)知識的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應(yīng)用,同時(shí)又為高中數(shù)學(xué)中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.通過具體實(shí)例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計(jì)算器用二分法求方程的近似解.3.會用二分法求一個(gè)函數(shù)在給定區(qū)間內(nèi)的零點(diǎn),從而求得方程的近似解. a.數(shù)學(xué)抽象:二分法的概念;b.邏輯推理:運(yùn)用二分法求近似解的原理;
一、教材的地位與作用 本節(jié)主要學(xué)習(xí)一元一次不等式組及其解集的概念,并要求學(xué)生會用數(shù)軸確定解集。它是一元一次不等式的后續(xù)學(xué)習(xí),也是一種基本的數(shù)學(xué)模型,也為下節(jié)和今后解決實(shí)際生產(chǎn)和生活問題奠定了堅(jiān)實(shí)的知識基礎(chǔ)。另外,整個(gè)學(xué)習(xí)的過程中數(shù)軸起著不可替代的作用,處處滲透著數(shù)形結(jié)合的思想,這種數(shù)學(xué)思想會一直影響著學(xué)生今后數(shù)學(xué)的學(xué)習(xí)。二、學(xué)情分析從學(xué)生學(xué)習(xí)的心理基礎(chǔ)和認(rèn)知特點(diǎn)來說,學(xué)生已經(jīng)學(xué)習(xí)了一元一次不等式,并能較熟練地解一元一次不等式,能將簡單的實(shí)際問題抽象為數(shù)學(xué)模型,有一定的數(shù)學(xué)化歸能力。但學(xué)生將兩個(gè)一元一次不等式的解集在同一數(shù)軸上表示會產(chǎn)生一定的困惑。這個(gè)年齡段的學(xué)生,以感性認(rèn)識為主,并向理性認(rèn)知過渡,所以,本節(jié)課的設(shè)計(jì)是通過學(xué)生所熟悉的問題情境,讓學(xué)生獨(dú)立思考,合作交流,從而引導(dǎo)其自主學(xué)習(xí)。
師:同學(xué)們,在四年級的時(shí)候,我們已經(jīng)了解了圖形的密鋪,請你說一說,什么是圖形的密鋪?(沒有重疊、沒有空隙地鋪在平面上,就是密鋪。)師:圖形的密鋪又可以叫做鑲嵌,以上四個(gè)圖片,都是由哪些基本圖形密鋪(鑲嵌)而成的呢?(請學(xué)生邊指邊說。)師:還有哪些圖形也可以鑲嵌?(學(xué)生可能回答:三角形,平行四邊形,梯形,菱形,正六邊形,……)師:今天就請你發(fā)揮一下想象力,設(shè)計(jì)一些與眾不同的鑲嵌圖形。[設(shè)計(jì)意圖說明:學(xué)生在四年級已經(jīng)初步了解了圖形的密鋪(鑲嵌)現(xiàn)象,四幅圖片是四年級下冊教材《三角形》單元中《密鋪》內(nèi)容中的原圖。本單元在此基礎(chǔ)上,通過數(shù)學(xué)游戲拓展鑲嵌圖形的范圍,讓學(xué)生用圖形變換設(shè)計(jì)鑲嵌圖案,進(jìn)一步感受圖形變換帶來的美感以及在生活中的應(yīng)用。]二、新授探究一:利用平移變換設(shè)計(jì)鑲嵌圖形
(一)例題引入籃球聯(lián)賽中,每場比賽都要分出勝負(fù),每隊(duì)勝1場得2分,負(fù)1場得1分。某隊(duì)在10場比賽中得到16分,那么這個(gè)隊(duì)勝負(fù)場數(shù)分別是多少?方法一:(利用之前的知識,學(xué)生自己列出并求解)解:設(shè)剩X場,則負(fù)(10-X)場。方程:2X+(10-X)=16方法二:(老師帶領(lǐng)學(xué)生一起列出方程組)解:設(shè)勝X場,負(fù)Y場。根據(jù):勝的場數(shù)+負(fù)的場數(shù)=總場數(shù) 勝場積分+負(fù)場積分=總積分得到:X+Y=10 2X+Y=16
2.過程與方法 經(jīng)歷圓錐的認(rèn)識過程,體驗(yàn)探究發(fā)現(xiàn)的學(xué)習(xí)方法。3.情感態(tài)度與價(jià)值觀 感受數(shù)學(xué)與實(shí)際生活的聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣?!窘虒W(xué)重點(diǎn)】 掌握圓錐的特征,及各部分名稱?!窘虒W(xué)難點(diǎn)】圓錐高的測量方法。【教學(xué)方法】啟發(fā)式教學(xué)、自主探索、合作交流、討論法、講解法?!菊n前準(zhǔn)備】多媒體課件、圓錐、直尺
(一)復(fù)習(xí)導(dǎo)入 1.師:我們學(xué)過了因數(shù)的有關(guān)知識,下面老師就檢驗(yàn)一下,看你們學(xué)得怎么樣?(課件第2張)(1)24的因數(shù)有(1,2,3,4,6,8,12,24),30的因數(shù)有(1,2,3,5,6,10,15,30),24和30的公因數(shù)有(1,2,3,6),它們的最大公因數(shù)是(6)。(2)分?jǐn)?shù)的分子和分母同時(shí)(乘)或(除以)一個(gè)(相同的數(shù))(0除外),分?jǐn)?shù)的大小(不變),這叫做分?jǐn)?shù)的基本性質(zhì)?!驹O(shè)計(jì)意圖】復(fù)習(xí)舊知,約分的根據(jù)是分?jǐn)?shù)的基本性質(zhì),要約成最簡分?jǐn)?shù),需要分子和分母同時(shí)除以它們的最大公因數(shù),所以復(fù)習(xí)環(huán)節(jié)設(shè)計(jì)了這兩個(gè)知識點(diǎn)的練習(xí),為學(xué)習(xí)新知識做準(zhǔn)備。2.大家一定都喜歡孫悟空吧!你知道孫悟空最大的本事是什么嗎?(72變)這節(jié)課我們就來創(chuàng)造第73變——變分?jǐn)?shù)?。ǘ┨骄啃轮? 1、探究約分的方法。(1)把化成分子和分母比較小且分?jǐn)?shù)大小不變的分?jǐn)?shù)。(課件第4張) 小組討論:你是怎么想的?匯報(bào)交流(課件第5張)生1:可以用分子和分母的公因數(shù)(1除外)去除。生2:我用24和30的公因數(shù)2去除,,然后再用12和15的公因數(shù)3去除, 生3:我直接用24和30的最大公因數(shù)6去除。(2)用自己的話說說什么是約分?(課件第6張)生1:把一個(gè)分?jǐn)?shù)化成和它相等,但分子和分母都比較小的分?jǐn)?shù),叫做約分。