提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

初一數(shù)學(xué)老師國旗下講話發(fā)言稿

  • 大班語言教案:《i,u,ü》教學(xué)設(shè)計

    大班語言教案:《i,u,ü》教學(xué)設(shè)計

    2、學(xué)會正確認(rèn)讀i、u、ü的帶調(diào)韻母。知道ü上標(biāo)聲調(diào)時,上面的小圓點不寫。3、會在四線格里抄寫i、u、ü三個單韻母。課時安排:2課時第一課時  教學(xué)目標(biāo):教學(xué)單韻母i、u并抄寫。  教學(xué)過程:  一、 復(fù)習(xí)檢查?! ?、猜謎語?! 。?)白鵝倒影是什么韻母?  (2)圓臉小姑娘,小辮右邊扎。這是什么韻母? ?。?)像個圓圈是什么韻母?  2、抽讀字母卡片?! 《?、 教學(xué)單韻母i。  1、看圖說話引出i?! D上畫著什么?圖上畫著一件衣服。i的發(fā)音與“衣”的音相同。  2、教學(xué)i的發(fā)音,認(rèn)清字形?! 。?)發(fā)音要領(lǐng):發(fā)音時嘴比發(fā)e時開得更小,只留一條小縫,舌前部升高,接近上腭,舌尖抵住下齒背,讓氣從舌尖和上腭中間自然流出。 ?。?)教師范讀、領(lǐng)讀。 ?。?)記憶字形?! 像什么?順口溜:“像支蠟燭i、i、i。”  3、書寫指導(dǎo):先寫豎,再寫點,兩筆寫成。  三、 教學(xué)單韻母u?! ?、看圖說話引出u?! D上畫著什么?“樹上有一只烏鴉?!睘貘f的“烏”就是u?! ?、教學(xué)u的發(fā)音,認(rèn)清字形?! 。?)發(fā)音要領(lǐng):發(fā)音時把嘴唇收攏,嘴唇比發(fā)o時更圓更小,舌尖后縮,舌根抬高,讓氣從小洞中出來?! 。?)教師范讀,領(lǐng)讀?! 。?)記憶字形。  可用順口溜:“像只茶杯u、u、u?!薄 ?、書寫指導(dǎo):u一筆寫成。  四、 鞏固復(fù)習(xí)。

  • 中班語言課件教案:鼠寶寶學(xué)外語

    中班語言課件教案:鼠寶寶學(xué)外語

    2. 理解詞:眉開眼笑、調(diào)皮。3. 在欣賞、分析過程中感受故事的幽默、詼諧。重點:要求理解鼠媽媽教鼠寶寶學(xué)外語的原因。難點:鼠寶寶從不愿學(xué)的動態(tài)表現(xiàn)到肯學(xué)的思想轉(zhuǎn)變過程。環(huán)境創(chuàng)設(shè)、材料準(zhǔn)備:圖片設(shè)計思路:這個故事生動有趣,詼諧幽默,能激起幼兒的學(xué)習(xí)興趣。一開始以照片的形式出現(xiàn),吸引了幼兒的注意力,讓幼兒加深了對鼠寶寶一家的喜愛之情。接著一系列的提問,例:“第二個生的叫什么?”發(fā)展了幼兒 <BR><P></P>的想象力和發(fā)展性思維能力,接著引導(dǎo)幼兒進入下一環(huán)節(jié),當(dāng)故事將到一半時停止講述,給幼兒留下了遐想的空間,讓幼兒運用已有的知識經(jīng)驗來理解“外語”一詞,通過懸念式的提問,激發(fā)幼兒的好奇性心和學(xué)習(xí)欲望。聽完故事,通過感受故事中有趣的詞句,對幼兒的傾聽能力提出了要求。接著教師的提問“為什么鼠寶寶一開始不愿學(xué)外語,可后來卻搶著說‘學(xué)外語真好呢’”?這個問題具有較強的開發(fā)性,幼兒可以從多個角度來回答,充分發(fā)展了幼兒的思維。同時,很自然地滲透了品德教育,避免了空洞的說教。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級上冊猜拳游戲中的學(xué)問說課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級上冊猜拳游戲中的學(xué)問說課稿

    想一想:為什么在師生猜拳中老師一直說“5”能贏?為什么選擇和多的那隊沒勝,而選擇和少的那隊卻勝了?選擇可能性大的是不是每次一定能贏?選擇可能性小是不是每一次一定都輸?(至此,本節(jié)課到了一個升華層次,學(xué)生通過互動游戲、自主探究、討論分析,從而揭示了“猜拳游戲”中的秘密,對“可能性”的理解達到了一個更高水平,有效地完成了本課重難點教學(xué)。)(4)實踐驗證。實踐驗證理論。再一次組織學(xué)生有目的地猜和,進行實踐驗證。讓理論與實踐有機的結(jié)合(三)拓展創(chuàng)新,內(nèi)化提升。兒童用品商店將要舉行促銷活動,凡到商店購物的顧客都可參加《轉(zhuǎn)盤轉(zhuǎn)轉(zhuǎn)樂》活動。每位顧客可轉(zhuǎn)兩次,用兩次指針?biāo)笖?shù)相加得到一個和,不同的和能得到相應(yīng)的獎項。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級上冊搭配中的學(xué)問說課稿2篇

    人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級上冊搭配中的學(xué)問說課稿2篇

    師:同學(xué)們真聰明,小精靈的問題回答出來了,現(xiàn)在就讓我們一起走進兒童樂園吧。(出示課件)請大家注意觀察,兒童樂園中都有哪些景點?師:從兒童樂園出發(fā)經(jīng)過百鳥園去猴山一共有幾條路?請同學(xué)們仔細(xì)觀察:從兒童樂園到百鳥園有幾條路?從百鳥園去猴山有幾條路?(生回答。)師:我們給這5條路分別標(biāo)上序號。(課件演示)現(xiàn)在請同學(xué)們想一想從兒童樂園的入口經(jīng)過百鳥園到達猴山一共有幾條路線?請同學(xué)們把答案寫在記錄紙上。(生匯報。)師:路線設(shè)計好了,讓我們一起到猴山看一看可愛的小猴子吧?。ǚ藕锷降匿浵瘛#煟嚎?,它們是一對著名的動物小明星,會演雜技的小猴寶寶和貝貝,你們想和它們照相留念嗎?生:想。師:好!那我們每個人都和寶寶、貝貝各照一張相片,同學(xué)們想一想,我們?nèi)?0個人一共要照多少張相片兒呢?

  • 中班計算《學(xué)習(xí)5以內(nèi)的序數(shù)》說課稿

    中班計算《學(xué)習(xí)5以內(nèi)的序數(shù)》說課稿

    序數(shù)是表示集合中元素次序的數(shù),是用自然數(shù)表示事物排列的次序,讓幼兒回答“第幾”的問題。認(rèn)識序數(shù)要以認(rèn)識基數(shù)為基礎(chǔ)。本班幼兒已學(xué)習(xí)了10以內(nèi)初步數(shù)概念的數(shù)序,為學(xué)習(xí)序數(shù)做好了準(zhǔn)備。學(xué)習(xí)序數(shù)不必像學(xué)習(xí)基數(shù)那樣逐個數(shù)地形成概念,因此可以分兩段集中學(xué)習(xí)10以內(nèi)的序數(shù),先學(xué)5以內(nèi)的序數(shù),再學(xué)10以內(nèi)的序數(shù),本節(jié)課就將內(nèi)容定為學(xué)習(xí)5以內(nèi)的序數(shù)。學(xué)習(xí)序數(shù)要求能從不同方向(從左到右,從右到左,從上到下,從下到上)確認(rèn)物體的排列次序。由于本節(jié)課是第一次接觸序數(shù),老師就降低了要求,即從左到右,從下到上來排列物體的次序,這符合幼兒的認(rèn)知經(jīng)驗。在生活中,幼兒已習(xí)慣這兩個方向來排列物體的次序。數(shù)數(shù)是從左到右數(shù)的,樓層是從下到上數(shù),避免了逆排序造成的干擾。

  • 小班數(shù)學(xué)《配對―找朋友》說課稿(附教案)

    小班數(shù)學(xué)《配對―找朋友》說課稿(附教案)

    《綱要》明確指出:教育內(nèi)容應(yīng)“貼近幼兒的生活來選擇幼兒感興趣的事物和問題,有助于拓展幼兒的經(jīng)驗的視野”,幼兒園數(shù)學(xué)教育不是為純粹的教育而教育,是一種以幼兒生活為特征的教育,這就要求我們要立足幼兒的生活實際,緊密聯(lián)系幼兒的生活來開展教育。像我班小朋友午睡起床,常有孩子把鞋子、襪子拿錯、穿反。根據(jù)小班幼兒年齡特點,我設(shè)計了以鞋子、襪子、鞋墊為活動材料的《找朋友》數(shù)學(xué)活動,引導(dǎo)孩子在原有的生活經(jīng)驗上關(guān)注物體的形狀、大小、顏色的不同,進行配對。在游戲中自然滲透數(shù)學(xué)的概念,達到“玩中學(xué),玩中教”的目的?;顒拥哪繕?biāo)對活動起著導(dǎo)向性作用,根據(jù)本班幼兒的年齡特點和實際情況,確立了情感、能力等方面的目標(biāo).其中有探索認(rèn)知部分,也有操作部分,具體目標(biāo)是:1、認(rèn)識目標(biāo):(1)、初步形成“雙”的概念,知道一雙有兩只。(2)、能按鞋子、襪子、鞋墊的外形,顏色,大小等特點進行配對。2、能力目標(biāo):發(fā)展幼兒的觀察力、記憶力、創(chuàng)造力和想象力。3、情感目標(biāo):體驗與教師、同伴游戲的快樂;初步感受改編兒歌的樂趣,從而激發(fā)幼兒的求知欲。

  • 幼兒園大班數(shù)學(xué)活動說課稿 認(rèn)識時鐘

    幼兒園大班數(shù)學(xué)活動說課稿 認(rèn)識時鐘

    幼兒園數(shù)學(xué)是一門系統(tǒng)性、邏輯性很強的學(xué)科,有著自身的特點和規(guī)律,密切聯(lián)系幼兒的生活,結(jié)合幼兒生活實際和知識經(jīng)驗來設(shè)計數(shù)學(xué)活動。時間無直觀形象是較為籠統(tǒng)的因此,運用了幼兒較熟悉的一日活動的作息時間,引導(dǎo)幼兒認(rèn)識整點、半點,如: 8 00 入園, 3 30 離園 … 這樣易引起幼兒的情緒體驗,為其理解和接受。根據(jù)教材內(nèi)容和幼兒的實際情況,制訂出本次活動的教學(xué)為:1 .使幼兒認(rèn)識時鐘,能叫出名稱,基本掌握鐘面的主要結(jié)構(gòu)。2 使幼兒知道時針、分針、以及它之間的運轉(zhuǎn)關(guān)系,能正確識別整點、半點。3 培養(yǎng)幼兒的觀察力和操作能力,使幼兒建立初步的時間概念。

  • 人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(2)

    本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關(guān)的化簡、求值、證明問題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學(xué)運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學(xué)建模:學(xué)生體會到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.

  • 空間向量及其運算的坐標(biāo)表示教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    空間向量及其運算的坐標(biāo)表示教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時我們就建立了一個空間直角坐標(biāo)系Oxyz,O叫做原點,i,j,k都叫做坐標(biāo)向量,通過每兩個坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 拋物線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標(biāo)是坐標(biāo)原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 拋物線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點;當(dāng)Δ=0時,直線與拋物線相切,有一個切點;當(dāng)Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準(zhǔn)線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 拋物線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個角度去認(rèn)識拋物線.教材在拋物線的定義這個內(nèi)容的安排上是:先從直觀上認(rèn)識拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個“圓錐曲線方程”一章,是學(xué)生應(yīng)重點掌握的基本數(shù)學(xué)方法 運動變化和對立統(tǒng)一的思想觀點在這節(jié)知識中得到了突出體現(xiàn),我們必須充分利用好這部分教材進行教學(xué)

  • 雙曲線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    ∵在△EFP中,|EF|=2c,EF上的高為點P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點坐標(biāo)為(5,4).由兩點間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個焦點的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點與兩焦點的距離之差的絕對值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點為焦點,且經(jīng)過點(3,√10);(3)a=b,經(jīng)過點(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點在x軸上時,可設(shè)雙曲線方程為x2-y2=a2,將點(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點在y軸上時,可設(shè)雙曲線方程為y2-x2=a2,將點(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.

  • 橢圓的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    橢圓的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.

  • 用空間向量研究距離、夾角問題(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究距離、夾角問題(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉(zhuǎn)化為空間某一個平面內(nèi)點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導(dǎo),運用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.了解兩角差的余弦公式的推導(dǎo)過程.2.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學(xué)生數(shù)形結(jié)合和類比的思想方法。 a.數(shù)學(xué)抽象:公式的推導(dǎo);b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學(xué)運算:運用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導(dǎo);e.數(shù)學(xué)建模:公式的靈活運用;

  • 雙曲線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖

  • 雙曲線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標(biāo)易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為

  • 橢圓的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    橢圓的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.

上一頁123...246247248249250251252253254255256257下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!