本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對(duì)復(fù)數(shù)的拓展延伸,這樣更有利于我們對(duì)復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實(shí)際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實(shí)際問題;5.數(shù)學(xué)運(yùn)算:能夠正確運(yùn)用復(fù)數(shù)三角形式計(jì)算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習(xí)鞏固的過程,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:?jiǎn)栴}一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個(gè)要素來表示復(fù)數(shù)呢?如何表示?
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修一》(人教A版)第三章《函數(shù)的概念與性質(zhì)》,本節(jié)課是第2課時(shí),本節(jié)課主要學(xué)習(xí)函數(shù)的三種表示方法及其簡(jiǎn)單應(yīng)用,進(jìn)一步加深對(duì)函數(shù)概念的理解。課本從引進(jìn)函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對(duì)函數(shù)的認(rèn)識(shí),幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過函數(shù)的學(xué)習(xí)更好地體會(huì)數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時(shí),要充分發(fā)揮圖象的直觀作用.課程目標(biāo) 學(xué)科素養(yǎng)A.在實(shí)際情景中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎń馕鍪椒?、圖象法、列表法)表示函數(shù);B.了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單地應(yīng)用;1.數(shù)學(xué)抽象:函數(shù)解析法及能由條件求函數(shù)的解析式;2.邏輯推理:求函數(shù)的解析式;
一、復(fù)習(xí)回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點(diǎn) 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對(duì)稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對(duì)稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點(diǎn)對(duì)稱思考2: 已知任意角α的終邊與單位圓相交于點(diǎn)P(x, y),請(qǐng)同學(xué)們思考回答點(diǎn)P關(guān)于原點(diǎn)、x軸、y軸對(duì)稱的三個(gè)點(diǎn)的坐標(biāo)是什么?【答案】點(diǎn)P(x, y)關(guān)于原點(diǎn)對(duì)稱點(diǎn)P1(-x, -y)點(diǎn)P(x, y)關(guān)于x軸對(duì)稱點(diǎn)P2(x, -y) 點(diǎn)P(x, y)關(guān)于y軸對(duì)稱點(diǎn)P3(-x, y)
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時(shí),本節(jié)主要介紹推廣角的概念,引入正角、負(fù)角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運(yùn)動(dòng)變化的觀點(diǎn),并由此進(jìn)一步理解推廣后的角的概念。教學(xué)方法可以選用討論法,通過實(shí)際問題,如時(shí)針與分針、體操等等都能形成角的流念,給學(xué)生以直觀的印象,形成正角、負(fù)角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學(xué)生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負(fù)角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會(huì)判斷角所在的象限。 1.數(shù)學(xué)抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學(xué)運(yùn)算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學(xué)思想方法;
知識(shí)探究(一):普查與抽查像人口普查這樣,對(duì)每一個(gè)調(diào)查調(diào)查對(duì)象都進(jìn)行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個(gè)調(diào)查中,我們把調(diào)查對(duì)象的全體稱為總體,組成總體的每一個(gè)調(diào)查對(duì)象稱為個(gè)體。為了強(qiáng)調(diào)調(diào)查目的,也可以把調(diào)查對(duì)象的某些指標(biāo)的全體作為總體,每一個(gè)調(diào)查對(duì)象的相應(yīng)指標(biāo)作為個(gè)體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費(fèi)巨大的財(cái)力、物力,因而不宜經(jīng)常進(jìn)行。為了及時(shí)掌握全國人口變動(dòng)狀況,我國每年還會(huì)進(jìn)行一次人口變動(dòng)情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動(dòng)情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個(gè)體進(jìn)行調(diào)查,并以此為依據(jù)對(duì)總體的情況作出估計(jì)和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個(gè)體稱為樣本,樣本中包含的個(gè)體數(shù)稱為樣本量。
1、知識(shí)與技能 (1)認(rèn)識(shí)勻速圓周運(yùn)動(dòng)的概念,理解線速度的概念,知道它就是物體做勻速圓周運(yùn)動(dòng)的瞬時(shí)速度;理解角速度和周期的概念,會(huì)用它們的公式進(jìn)行計(jì)算; (2)理解線速度、角速度、周期之間的關(guān)系:v=rω=2πr/T; (3)理解勻速圓周運(yùn)動(dòng)是變速運(yùn)動(dòng)。 2、過程與方法 (1)運(yùn)用極限法理解線速度的瞬時(shí)性.掌握運(yùn)用圓周運(yùn)動(dòng)的特點(diǎn)如何去分析有關(guān)問題; (2)體會(huì)有了線速度后.為什么還要引入角速度.運(yùn)用數(shù)學(xué)知識(shí)推導(dǎo)角速度的單位。
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因?yàn)閜是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡(jiǎn)p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實(shí)數(shù)a的取值范圍.【答案】見解析【解析】因?yàn)椤皒∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識(shí)及解題技巧
(4)“不論m取何實(shí)數(shù),方程x2+2x-m=0都有實(shí)數(shù)根”是全稱量詞命題,其否定為“存在實(shí)數(shù)m0,使得方程x2+2x-m0=0沒有實(shí)數(shù)根”,它是真命題.解題技巧:(含有一個(gè)量詞的命題的否定方法)(1)一般地,寫含有一個(gè)量詞的命題的否定,首先要明確這個(gè)命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應(yīng)結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時(shí)否定結(jié)論.(2)對(duì)于省略量詞的命題,應(yīng)先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓(xùn)練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個(gè)實(shí)數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.
(二)?過程與方法? 4.?觀察生活中的慣性現(xiàn)象,了解力和運(yùn)動(dòng)的關(guān)系? 5.?通過實(shí)驗(yàn)加深對(duì)牛頓第一定律的理解? 6.?理解理想實(shí)驗(yàn)是科學(xué)研究的重要方法? (三)?情感態(tài)度與價(jià)值觀? 7.?通過伽利略和亞里士多德對(duì)力和運(yùn)動(dòng)關(guān)系的不同認(rèn)識(shí),了解人類認(rèn)識(shí)事物本質(zhì)的曲折性? 8.?感悟科學(xué)是人類進(jìn)步的不竭動(dòng)力
答案:銅車馬的輝煌,來自原料的精挑細(xì)選、工藝的精巧極致和工匠的精心雕琢。可以說,是精益求精的工匠精神鍛造出了“青銅之冠”的銅車馬。2.“工匠精神”如此重要,那么,你認(rèn)為“工匠精神”有著怎樣的現(xiàn)實(shí)意義?觀點(diǎn)一:工匠精神在企業(yè)層面,可以認(rèn)為是企業(yè)精神。具體而言,表現(xiàn)在以下幾個(gè)方面。第一,創(chuàng)新是企業(yè)不斷發(fā)展的精神內(nèi)核。第二,敬業(yè)是企業(yè)領(lǐng)導(dǎo)者精神的動(dòng)力。第三,執(zhí)著是企業(yè)走得長(zhǎng)久的底氣。改革開放40 多年來,我國涌現(xiàn)出大批有工匠精神的企業(yè),但也有一些企業(yè)缺乏企業(yè)精神,只追求“短平快”的經(jīng)濟(jì)效益。這正是經(jīng)濟(jì)發(fā)展的隱憂所在。觀點(diǎn)二:工匠精神在員工層面,就是一-種認(rèn)真精神、敬業(yè)精神。其核心是: 不僅僅把工作當(dāng)作賺錢養(yǎng)家糊口的工具,而是樹立起對(duì)職業(yè)敬畏、對(duì)工作執(zhí)著、對(duì)產(chǎn)品負(fù)責(zé)的態(tài)度,極度注重細(xì)節(jié),不斷追求完美和極致,給客戶無可挑剔的體驗(yàn)。我國制造業(yè)存在大而不強(qiáng)、產(chǎn)品檔次整體不高、自主創(chuàng)新能力較弱等現(xiàn)象,多少與工匠精神稀缺、“差不多精神”有關(guān)。
王安石,字介甫,號(hào)半山。北宋著名政治家、思想家、文學(xué)家、改革家,唐宋八大家之一。歐陽修稱贊王安石:“翰林風(fēng)月三千首,吏部文章二百年。老去自憐心尚在,后來誰與子爭(zhēng)先?!眰魇牢募小锻跖R川集》、《臨川集拾遺》等。其詩文各體兼擅,詞雖不多,但亦擅長(zhǎng),世人哄傳之詩句莫過于《泊船瓜洲》中的“春風(fēng)又綠江南岸,明月何時(shí)照我還。”且有名作《桂枝香》等。介紹之后設(shè)置這樣的導(dǎo)入語:今天我們共同走進(jìn)王安石,一起欣賞名作《桂枝香·金陵懷古》。(板書標(biāo)題)(二)整體感知整體感知是賞析文章的前提,通過初讀,可以使學(xué)生初步了解將要學(xué)到的基本內(nèi)容,了解文章大意及思想意圖,使學(xué)生對(duì)課文內(nèi)容形成整體感知。首先,我會(huì)讓學(xué)生根據(jù)課前預(yù)習(xí),出聲誦讀課文,同時(shí)注意朗讀的快慢、停頓、語調(diào)、輕重音等,然后再播放音頻,糾正他們的讀音與停頓。其次,我會(huì)引導(dǎo)學(xué)生談?wù)勊惺?。學(xué)生通過朗讀,能夠說出本詞雄壯、豪放、有氣勢(shì),有對(duì)景物的贊美和對(duì)歷史的感喟。
一、教材解析《桂枝香·金陵懷古》選自統(tǒng)教版必修下冊(cè)古詩詞誦讀單元,此詞通過對(duì)金陵景物的贊美和歷史興亡的感喟,寄托了作者對(duì)當(dāng)時(shí)朝政的擔(dān)憂和對(duì)國家政治大事的關(guān)心。全詞情景交融,境界雄渾闊大,風(fēng)格沉郁悲壯,把壯麗的景色和歷史內(nèi)容和諧地融合在一起,自成一格,堪稱名篇。二、學(xué)情分析高中一年級(jí)的學(xué)生已具有一定的詩歌閱讀鑒賞能力,對(duì)學(xué)生來說,最重要的是積累誦讀方法,提升鑒賞能力。在本文的教學(xué)過程中著重落實(shí)“讀”,通過多樣化的“讀”,提升對(duì)詩歌“美”的感悟鑒賞能力。三、教學(xué)目標(biāo)從課程標(biāo)準(zhǔn)中“全面提高學(xué)生語文素養(yǎng)”的基本理念出發(fā),我設(shè)計(jì)了以下教學(xué)目標(biāo):1.語言建構(gòu)與運(yùn)用:疏通疑難字詞,讀懂詩句體會(huì)詞的誦讀要領(lǐng)。
本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識(shí)的延伸,同時(shí),它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對(duì)于三角變換、三角恒等式的證明和三角函數(shù)式的化簡(jiǎn)、求值等三角問題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運(yùn)用二倍角公式解決有關(guān)的化簡(jiǎn)、求值、證明問題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運(yùn)用公式解決基本三角函數(shù)式的化簡(jiǎn)、證明等問題;3.數(shù)學(xué)運(yùn)算:運(yùn)用公式解決基本三角函數(shù)式求值問題.4.數(shù)學(xué)建模:學(xué)生體會(huì)到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個(gè)角度去認(rèn)識(shí)拋物線.教材在拋物線的定義這個(gè)內(nèi)容的安排上是:先從直觀上認(rèn)識(shí)拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡(jiǎn)單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實(shí)例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對(duì)概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個(gè)“圓錐曲線方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的思想觀點(diǎn)在這節(jié)知識(shí)中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)
∵在△EFP中,|EF|=2c,EF上的高為點(diǎn)P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點(diǎn)坐標(biāo)為(5,4).由兩點(diǎn)間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點(diǎn)與兩焦點(diǎn)的距離之差的絕對(duì)值等于8;(2)以橢圓x^2/8+y^2/5=1長(zhǎng)軸的端點(diǎn)為焦點(diǎn),且經(jīng)過點(diǎn)(3,√10);(3)a=b,經(jīng)過點(diǎn)(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點(diǎn)在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點(diǎn)在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點(diǎn)在x軸上時(shí),可設(shè)雙曲線方程為x2-y2=a2,將點(diǎn)(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點(diǎn)在y軸上時(shí),可設(shè)雙曲線方程為y2-x2=a2,將點(diǎn)(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點(diǎn)不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.
二、探究新知一、點(diǎn)到直線的距離、兩條平行直線之間的距離1.點(diǎn)到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點(diǎn),P是直線l外一點(diǎn).設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點(diǎn)P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點(diǎn)P,則兩條平行直線間的距離就等于點(diǎn)P到直線m的距離.點(diǎn)睛:點(diǎn)到直線的距離,即點(diǎn)到直線的垂線段的長(zhǎng)度,由于直線與直線外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線的距離問題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線EF的距離為 . 答案: √174/6解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時(shí)間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時(shí)的知識(shí)儲(chǔ)備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個(gè)概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點(diǎn)之一,而必要條件的定義又是本節(jié)內(nèi)容的難點(diǎn).A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會(huì)判斷命題的充分條件、必要條件、充要條件.C.通過學(xué)習(xí),使學(xué)生明白對(duì)條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).
本章是第三章第一節(jié)的開端,學(xué)生在第二節(jié)已經(jīng)學(xué)習(xí)了元素的組成和一些生物大分子,本節(jié)課內(nèi)容是學(xué)會(huì)使用顯微鏡,這是生物學(xué)習(xí)過程中最為重要的一種手段之一。對(duì)于今后的實(shí)驗(yàn)學(xué)習(xí)有著極其重要的作用。 學(xué)生中大部分同學(xué)在初中階段都有接觸過光學(xué)顯微鏡,所以在學(xué)習(xí)理論知識(shí)的時(shí)候能夠順利的進(jìn)行,但因?yàn)閷W(xué)校的條件有限,不能保證同學(xué)們進(jìn)行顯微鏡的實(shí)驗(yàn),本節(jié)課結(jié)合學(xué)生情況和實(shí)際情況,采用圖片和模型展示的方法進(jìn)行。 知識(shí)與能力 1、概述細(xì)胞學(xué)說建立的過程。 2、概述細(xì)胞學(xué)說的內(nèi)容和意義。 3、學(xué)習(xí)制作臨時(shí)玻片標(biāo)本,使用顯微鏡和繪圖的能。
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點(diǎn),且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點(diǎn)C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個(gè)平面相交,如果它們所成的二面角是直二面角,就說這兩個(gè)平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時(shí),常用鉛錘來檢測(cè)所砌的墻面與地面是否垂直,如果系有鉛錘的細(xì)繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說明了什么道理?
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1》5.6.2節(jié) 函數(shù)y=Asin(ωx+φ)的圖象通過圖象變換,揭示參數(shù)φ、ω、A變化時(shí)對(duì)函數(shù)圖象的形狀和位置的影響。通過引導(dǎo)學(xué)生對(duì)函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律的探索,讓學(xué)生體會(huì)到由簡(jiǎn)單到復(fù)雜、由特殊到一般的化歸思想;并通過對(duì)周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點(diǎn)的突破,讓學(xué)生學(xué)會(huì)抓住問題的主要矛盾來解決問題的基本思想方法;通過對(duì)參數(shù)φ、ω、A的分類討論,讓學(xué)生深刻認(rèn)識(shí)圖象變換與函數(shù)解析式變換的內(nèi)在聯(lián)系。通過圖象變換和“五點(diǎn)”作圖法,正確找出函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律,這也是本節(jié)課的重點(diǎn)所在。提高學(xué)生的推理能力。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。