統(tǒng)計(jì)是一種數(shù)學(xué)思想,也是認(rèn)識(shí)客觀事物常用的一種方法。讓學(xué)生學(xué)習(xí)統(tǒng)計(jì),要引導(dǎo)他們經(jīng)歷收集、整理數(shù)據(jù)的過程,精力把整理出來的數(shù)據(jù)用圖表形式表現(xiàn)出來的過程,經(jīng)歷對(duì)統(tǒng)計(jì)的數(shù)據(jù)進(jìn)行分析、判斷的過程,從中理解并掌握一些有關(guān)統(tǒng)計(jì)的基礎(chǔ)知識(shí)和基本技能,學(xué)習(xí)解決實(shí)際問題。(一)新的課程標(biāo)準(zhǔn)要求我們的數(shù)學(xué)課程應(yīng)體現(xiàn)基礎(chǔ)性、普及性和發(fā)展性。要強(qiáng)調(diào)從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),要使學(xué)生學(xué)有價(jià)值的數(shù)學(xué),這些內(nèi)容要有利于學(xué)生主動(dòng)地進(jìn)行觀察、實(shí)驗(yàn)、猜測、驗(yàn)證、理解與交流等數(shù)學(xué)活動(dòng)。(二)本課的教學(xué)通過學(xué)生積極參與數(shù)學(xué)活動(dòng),合作交流,力求體現(xiàn)人人學(xué)有價(jià)值的數(shù)學(xué),體現(xiàn)數(shù)學(xué)就在我們的身邊,與我們的學(xué)習(xí)生活緊密相聯(lián),體會(huì)統(tǒng)計(jì)的目的和意義,掌握統(tǒng)計(jì)的方法,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的樂趣。
教學(xué)內(nèi)容:統(tǒng)一長度單位教材分析:通過量一量說一說想一想等活動(dòng)切實(shí)感受到統(tǒng)一長度單位的必要性及其對(duì)生活的重要意義。學(xué)情分析:在上冊(cè)“比一比”中學(xué)了比較物體長短的基礎(chǔ)上學(xué)習(xí)的。盡管學(xué)生有這方面的經(jīng)驗(yàn)和基礎(chǔ),但是長度單位的操作和應(yīng)用是多種知識(shí)的綜合,對(duì)小孩來說還是比較難的,在教學(xué)中應(yīng)根據(jù)學(xué)生特點(diǎn),注重實(shí)踐性,培養(yǎng)觀察力。教學(xué)目標(biāo):1、讓學(xué)生通過量一量、說一說的活動(dòng),體驗(yàn)統(tǒng)一長度單位的過程,感受統(tǒng)一長度單位的必要性,為厘米、米的學(xué)習(xí)打下基礎(chǔ)。2、讓學(xué)生用不同實(shí)物作標(biāo)準(zhǔn)進(jìn)行測量,培養(yǎng)學(xué)生的動(dòng)手、思考能力,以及合作、估測的意識(shí)。3、通過不同的測量活動(dòng),讓學(xué)生體驗(yàn)測量活動(dòng)的過程,感受學(xué)習(xí)與生活的聯(lián)系,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣。
二、教法運(yùn)用分?jǐn)?shù)在日常生活中經(jīng)常出現(xiàn),但學(xué)生對(duì)它的認(rèn)識(shí)卻各不相同。新課程標(biāo)準(zhǔn)視學(xué)習(xí)為“做”的過程、“經(jīng)驗(yàn)”的過程,凸現(xiàn)學(xué)生學(xué)習(xí)的實(shí)踐性特點(diǎn)。因此,本課的設(shè)計(jì)力求在教法上體現(xiàn)“在玩中學(xué),在做中學(xué),在合作交流中學(xué)”的思想。本節(jié)課以引導(dǎo)發(fā)現(xiàn)法為主,綜合運(yùn)用多種教法,創(chuàng)設(shè)有利于學(xué)生參與探索活動(dòng)的學(xué)習(xí)環(huán)境,幫助學(xué)生學(xué)習(xí)分?jǐn)?shù)的有關(guān)知識(shí),實(shí)現(xiàn)促進(jìn)學(xué)生能力發(fā)展的教育目標(biāo)。三、學(xué)法指導(dǎo)在學(xué)法上則突出“自主學(xué)習(xí),實(shí)踐感知”的特點(diǎn),加強(qiáng)數(shù)學(xué)實(shí)踐活動(dòng),讓學(xué)生主動(dòng)建構(gòu)數(shù)學(xué)知識(shí)。學(xué)生對(duì)數(shù)學(xué)知識(shí)的學(xué)習(xí),不是被動(dòng)接受,而是主動(dòng)建構(gòu),而動(dòng)手操作對(duì)學(xué)生的建構(gòu)有著積極的促進(jìn)作用。讓學(xué)生在動(dòng)手、動(dòng)腦、動(dòng)口的過程中實(shí)現(xiàn)知識(shí)的遷移類推,主動(dòng)建構(gòu)數(shù)學(xué)知識(shí)。
1、結(jié)合具體生活場景,能運(yùn)用所學(xué)的乘法口訣解決簡單的實(shí)際問題,通過圖與式的對(duì)應(yīng),進(jìn)一步理解乘法的意義。 2、能熟練運(yùn)用口訣進(jìn)行計(jì)算,提高靈活運(yùn)用口訣解決實(shí)際問題的能力。 3、體會(huì)數(shù)學(xué)與實(shí)際生活的聯(lián)系,培養(yǎng)用數(shù)學(xué)的意識(shí),體驗(yàn)口訣在解決問題中的作用。 運(yùn)用所學(xué)乘法解決簡單的實(shí)際問題。 結(jié)合實(shí)際情景理解乘法的意義。 1、口算: 5×2=10 6×2=12 8×5=40 2×7=14 5×9=45 3×5=15 2×6=12 2×9=18 4×2=8 2、談話導(dǎo)入:在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了乘法,而且還學(xué)習(xí)了2和5的乘法口訣。這節(jié)課,老師想請(qǐng)同學(xué)們用這些跟乘法有關(guān)的知識(shí)來幫助老師一起解決生活中遇到的問題,一起來看一看吧??鞓沸菹r(shí)間到了,學(xué)校的大操場突然熱鬧起來了,你們一定非常喜歡課件活動(dòng)吧!看,操場上同學(xué)們有的在玩老鷹捉小雞的游戲,有的在進(jìn)行乒乓球比賽,有的在跳繩,還有的在踢毽子……真熱鬧啊!
課程分析中專數(shù)學(xué)課程教學(xué)是專業(yè)建設(shè)與專業(yè)課程體系改革的一部分,應(yīng)與專業(yè)課教學(xué)融為一體,立足于為專業(yè)課服務(wù),解決實(shí)際生活中常見問題,結(jié)合中專學(xué)生的實(shí)際,強(qiáng)調(diào)數(shù)學(xué)的應(yīng)用性,以滿足學(xué)生在今后的工作崗位上的實(shí)際應(yīng)用為主,這也體現(xiàn)了新課標(biāo)中突出應(yīng)用性的理念。分段函數(shù)的實(shí)際應(yīng)用在本課程中的地位:(1) 函數(shù)是中專數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的思想貫穿于整個(gè)中專數(shù)學(xué)之中,分段函數(shù)在科技和生活的各個(gè)領(lǐng)域有著十分廣泛的應(yīng)用。(2) 本節(jié)所探討學(xué)習(xí)分段函數(shù)在生活生產(chǎn)中的實(shí)際問題上應(yīng)用,培養(yǎng)學(xué)生分析與解決問題的能力,養(yǎng)成正確的數(shù)學(xué)化理性思維的同時(shí),形成一種意識(shí),即數(shù)學(xué)“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國家規(guī)劃教材,依照13級(jí)教學(xué)計(jì)劃,函數(shù)的實(shí)際應(yīng)用舉例內(nèi)容安排在第三章函數(shù)的最后一部分講解。本節(jié)內(nèi)容是在學(xué)生熟知函數(shù)的概念,表示方法和對(duì)函數(shù)性質(zhì)有一定了解的基礎(chǔ)上研究分段函數(shù),同時(shí)深化學(xué)生對(duì)函數(shù)概念的理解和認(rèn)識(shí),也為接下來學(xué)習(xí)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)作了良好鋪墊。根據(jù)13級(jí)學(xué)生實(shí)際情況,由生活生產(chǎn)中的實(shí)際問題入手,求得分段函數(shù)此部分知識(shí)以學(xué)生生活常識(shí)為背景,可以引導(dǎo)學(xué)生分析得出。
在教學(xué)中我力求做到以下幾點(diǎn)一、體現(xiàn)“活動(dòng)性”,讓學(xué)生在活動(dòng)中體驗(yàn)?!缎抡n標(biāo)》明確指出:“讓學(xué)生在具體的數(shù)學(xué)活動(dòng)中體驗(yàn)數(shù)學(xué)知識(shí)?!币虼?,我在新授部分以學(xué)生喜歡摸子活動(dòng)開始,以期激發(fā)他們學(xué)習(xí)的熱情和興趣,使學(xué)生在活動(dòng)過程中感知“一定”、“可能”、“不可能”,進(jìn)而能判斷生活與數(shù)學(xué)中的“一定”、“可能”、“不可能”這三種情況。并能用自己的語言描述事情發(fā)生的三種情況;(然而在課堂中,讓學(xué)生把這三個(gè)詞語放在一起例舉數(shù)學(xué)與生活中的實(shí)例吧,學(xué)生說起來還是有一定難度的,所以在教學(xué)中我只有通過自己先舉例在讓學(xué)生說,這時(shí)學(xué)生才能說出例子來。)最后又讓學(xué)生小組合作學(xué)習(xí)感知體驗(yàn)可能性是有大小的,達(dá)到鞏固與應(yīng)用的目的。
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設(shè)情境 興趣導(dǎo)入 與正弦函數(shù)圖像的做法類似,可以用“五點(diǎn)法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例3 作出函數(shù)在一個(gè)周期內(nèi)的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個(gè)關(guān)鍵點(diǎn)的橫坐標(biāo),分別令,,,,,求出對(duì)應(yīng)的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標(biāo),描出對(duì)應(yīng)五個(gè)關(guān)鍵點(diǎn)(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結(jié)各點(diǎn),得到函數(shù)在一個(gè)周期內(nèi)的圖像(如圖). 圖 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 15
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問題中,經(jīng)常需要計(jì)算高度、長度、距離和角的大小,這類問題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例6一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時(shí)后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因?yàn)椤螻BC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測量的點(diǎn)C,如果C=60°,AB = 350m,BC = 450m,試計(jì)算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 40
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 3.1 排列與組合. *創(chuàng)設(shè)情境 興趣導(dǎo)入 基礎(chǔ)模塊中,曾經(jīng)學(xué)習(xí)了兩個(gè)計(jì)數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個(gè)步驟.完成第1個(gè)步驟有k1種方法,完成第2個(gè)步驟有k2種方法,……,完成第n個(gè)步驟有kn種方法,并且只有這n個(gè)步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個(gè)問題: 在北京、重慶、上海3個(gè)民航站之間的直達(dá)航線,需要準(zhǔn)備多少種不同的機(jī)票? 這個(gè)問題就是從北京、重慶、上海3個(gè)民航站中,每次取出2個(gè)站,按照起點(diǎn)在前,終點(diǎn)在后的順序排列,求不同的排列方法的總數(shù). 首先確定機(jī)票的起點(diǎn),從3個(gè)民航站中任意選取1個(gè),有3種不同的方法;然后確定機(jī)票的終點(diǎn),從剩余的2個(gè)民航站中任意選取1個(gè),有2種不同的方法.根據(jù)分步計(jì)數(shù)原理,共有3×2=6種不同的方法,即需要準(zhǔn)備6種不同的飛機(jī)票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本?,上海→重慶. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 15*動(dòng)腦思考 探索新知 我們將被取的對(duì)象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個(gè)不同元素中,任取2個(gè),按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個(gè)不同元素中,任取m (m≤n)個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列,時(shí)叫做選排列,時(shí)叫做全排列. 總結(jié) 歸納 分析 關(guān)鍵 詞語 思考 理解 記憶 引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題方法 20
一、定義: ,這一公式表示的定理叫做二項(xiàng)式定理,其中公式右邊的多項(xiàng)式叫做的二項(xiàng)展開式;上述二項(xiàng)展開式中各項(xiàng)的系數(shù) 叫做二項(xiàng)式系數(shù),第項(xiàng)叫做二項(xiàng)展開式的通項(xiàng),用表示;叫做二項(xiàng)展開式的通項(xiàng)公式.二、二項(xiàng)展開式的特點(diǎn)與功能1. 二項(xiàng)展開式的特點(diǎn)項(xiàng)數(shù):二項(xiàng)展開式共(二項(xiàng)式的指數(shù)+1)項(xiàng);指數(shù):二項(xiàng)展開式各項(xiàng)的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項(xiàng)式系數(shù)的下標(biāo)與上標(biāo)的差),第二字母依次升冪(其冪指數(shù)等于二項(xiàng)式系數(shù)的上標(biāo)),并且每一項(xiàng)中兩個(gè)字母的系數(shù)之和均等于二項(xiàng)式的指數(shù);系數(shù):各項(xiàng)的二項(xiàng)式系數(shù)下標(biāo)等于二項(xiàng)式指數(shù);上標(biāo)等于該項(xiàng)的項(xiàng)數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項(xiàng)展開式的功能注意到二項(xiàng)展開式的各項(xiàng)均含有不同的組合數(shù),若賦予a,b不同的取值,則二項(xiàng)式展開式演變成一個(gè)組合恒等式.因此,揭示二項(xiàng)式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項(xiàng)式問題的原始依據(jù).又注意到在的二項(xiàng)展開式中,若將各項(xiàng)中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項(xiàng)式公式也是不可或缺的理論依據(jù).
重點(diǎn)分析:本節(jié)課的重點(diǎn)是離散型隨機(jī)變量的概率分布,難點(diǎn)是理解離散型隨機(jī)變量的概念. 離散型隨機(jī)變量 突破難點(diǎn)的方法: 函數(shù)的自變量 隨機(jī)變量 連續(xù)型隨機(jī)變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12
教材分析這部分內(nèi)容是在認(rèn)識(shí)鐘表上的整時(shí)、半時(shí)的基礎(chǔ)上進(jìn)一步認(rèn)識(shí)鐘面上的時(shí)、分。分是非常重要的時(shí)間單位,也是進(jìn)一步學(xué)習(xí)年、月、日的基礎(chǔ)。時(shí)間單位不像長度、質(zhì)量單位那樣容易表現(xiàn)出來,比較抽象,學(xué)生不容易理解。所以,應(yīng)以學(xué)生的生活經(jīng)驗(yàn)為基礎(chǔ),把學(xué)習(xí)內(nèi)容與學(xué)生的生活實(shí)際密切聯(lián)系起來,進(jìn)行教學(xué)?!拔覀冓A了”是結(jié)合“北京申奧成功”這一情境,讓我們記住這一歷史時(shí)刻——2001年7月13日晚上10時(shí)08分。用記載著這一歷史時(shí)刻的鐘面,引導(dǎo)學(xué)生交流自己對(duì)鐘面的認(rèn)識(shí),激活學(xué)生已有的生活經(jīng)驗(yàn);同時(shí),抓住機(jī)會(huì)滲透愛國主義教育,引導(dǎo)學(xué)生關(guān)注社會(huì),關(guān)心時(shí)事。學(xué)情分析學(xué)生在一年級(jí)時(shí)已經(jīng)學(xué)過了鐘面的簡單知識(shí)并會(huì)認(rèn)識(shí)整時(shí)和整時(shí)半。但有關(guān)時(shí)間的認(rèn)知顯得有些混亂,對(duì)時(shí)針和分針表示的意義分辨不清,多數(shù)孩子還不能讀出準(zhǔn)確的時(shí)刻。
【反思】本節(jié)課的教學(xué)注重體現(xiàn)了情境教學(xué)在教學(xué)中的運(yùn)用。課堂上體現(xiàn)了這樣幾個(gè)特點(diǎn):1.數(shù)學(xué)知識(shí)與生活實(shí)際相結(jié)合。數(shù)學(xué)來源于生活,生活中處處有數(shù)學(xué)。小學(xué)生對(duì)熟悉的生活情境和事物感興趣。所以我從他們熟悉的事物中尋找教學(xué)題材,設(shè)計(jì)了有趣的情景教學(xué)。讓學(xué)生感到數(shù)學(xué)知識(shí)就在他們身邊,感到數(shù)學(xué)的作用,設(shè)計(jì)了作息時(shí)間表。這樣,既鞏固了時(shí)間的知識(shí)。又可以教育學(xué)生在生活中要合理安排時(shí)間,不要浪費(fèi)時(shí)間,做時(shí)間的主人。2.注重在學(xué)習(xí)中自主探究,合作交流。在教學(xué)《時(shí)間的計(jì)算》時(shí),讓學(xué)生用自己制作的學(xué)具表親自動(dòng)手撥一撥,想一想讓他們主動(dòng)嘗試自主發(fā)展。教學(xué)例2時(shí)讓他們小組合作交流學(xué)習(xí)方法。這些都體現(xiàn)了培養(yǎng)學(xué)生的能力.自主探究的精神。
(1)猜想設(shè)疑。組織學(xué)生進(jìn)行游戲?qū)嵺`,結(jié)果可能是選擇和少的那隊(duì)贏了。為什么選擇和多的那隊(duì)沒勝,選擇和少的那隊(duì)卻勝了呢?這里面又藏著什么奧秘呢?“猜想”是有方向的猜測和判斷,是學(xué)生有效學(xué)習(xí)的良好準(zhǔn)備。這里通過引導(dǎo)學(xué)生大膽猜測,由猜測結(jié)果與實(shí)際結(jié)果不同而引發(fā)學(xué)生的認(rèn)知沖突,進(jìn)而激發(fā)學(xué)生的求知欲,為后面的教學(xué)埋下了伏筆,從而很自然的過渡到下一個(gè)環(huán)節(jié)。(2)統(tǒng)計(jì)實(shí)驗(yàn)。這部分教學(xué)讓全體學(xué)生參與獲得知識(shí)的全過程,并在實(shí)驗(yàn)中與統(tǒng)計(jì)知識(shí)有機(jī)結(jié)合起來,提高了學(xué)生綜合運(yùn)用知識(shí)的能力。同時(shí)讓全體學(xué)生參與實(shí)驗(yàn)統(tǒng)計(jì),實(shí)驗(yàn)數(shù)據(jù)更加充分,實(shí)驗(yàn)結(jié)果與預(yù)測更加接近,從而達(dá)到實(shí)驗(yàn)?zāi)康摹?/p>
本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對(duì)復(fù)數(shù)的拓展延伸,這樣更有利于我們對(duì)復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實(shí)際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實(shí)際問題;5.數(shù)學(xué)運(yùn)算:能夠正確運(yùn)用復(fù)數(shù)三角形式計(jì)算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習(xí)鞏固的過程,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:問題一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個(gè)要素來表示復(fù)數(shù)呢?如何表示?
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點(diǎn),且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點(diǎn)C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個(gè)平面相交,如果它們所成的二面角是直二面角,就說這兩個(gè)平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時(shí),常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細(xì)繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說明了什么道理?
本節(jié)課是在學(xué)習(xí)了三角函數(shù)圖象和性質(zhì)的前提下來學(xué)習(xí)三角函數(shù)模型的簡單應(yīng)用,進(jìn)一步突出函數(shù)來源于生活應(yīng)用于生活的思想,讓學(xué)生體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問題的數(shù)學(xué)“建模”思想,從而培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力.課程目標(biāo)1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會(huì)用三角函數(shù)模型解決一些簡單的實(shí)際問題.2.實(shí)際問題抽象為三角函數(shù)模型. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯抽象:實(shí)際問題抽象為三角函數(shù)模型問題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實(shí)際問題中抽取基本的數(shù)學(xué)關(guān)系來建立數(shù)學(xué)模型; 3.數(shù)學(xué)運(yùn)算:實(shí)際問題求解; 4.數(shù)學(xué)建模:體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問題的數(shù)學(xué)建模思想,提高學(xué)生的建模、分析問題、數(shù)形結(jié)合、抽象概括等能力.
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進(jìn)行度量。根據(jù)上述數(shù)據(jù)計(jì)算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績波動(dòng)范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個(gè)值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會(huì)太遠(yuǎn);相反,如果射擊的成績波動(dòng)幅度很大,那么大多數(shù)的射擊成績離平均成績會(huì)比較遠(yuǎn)。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動(dòng)幅度。
可以通過下面的步驟計(jì)算一組n個(gè)數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計(jì)算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項(xiàng)數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項(xiàng)與第i+1項(xiàng)的平均數(shù)。我們?cè)诔踔袑W(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實(shí)際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個(gè)分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計(jì)中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計(jì)樹人中學(xué)高一年級(jí)女生第25,50,75百分位數(shù)。
設(shè)計(jì)意圖:在游戲中鞏固策略,提高學(xué)生學(xué)習(xí)興趣,緩解學(xué)習(xí)疲勞。這個(gè)游戲的“揭密”過程關(guān)注方法的多樣化,讓學(xué)生體會(huì)列方程的策略和倒推策略之間的聯(lián)系,把新舊知識(shí)進(jìn)行了有機(jī)地融合,以培養(yǎng)學(xué)生思維的靈活性和發(fā)散性。四、課堂小結(jié) 提升策略提問學(xué)生:這節(jié)課你學(xué)會(huì)了應(yīng)用什么策略解決實(shí)際問題?什么類型的題目適合用今天的策略解答?用這樣的策略解決實(shí)際問題要注意什么?你還有別的收獲嗎?設(shè)計(jì)意圖:突出主題,讓學(xué)生總結(jié)本課的學(xué)習(xí)內(nèi)容和學(xué)習(xí)重點(diǎn);同時(shí)關(guān)注學(xué)生的個(gè)性發(fā)展,引導(dǎo)學(xué)生進(jìn)行個(gè)性化的總結(jié),體現(xiàn)不同層次的學(xué)生對(duì)課堂教學(xué)的領(lǐng)悟程度。五、課堂作業(yè)列方程解決實(shí)際問題,完成練習(xí)一4、5兩題。設(shè)計(jì)意圖:及時(shí)反饋學(xué)生學(xué)習(xí)情況,為后續(xù)教學(xué)研究收集寶貴的教學(xué)信息。