它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進(jìn)行求值、化簡、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運(yùn)算能力,但在數(shù)學(xué)的應(yīng)用意識與應(yīng)用能力方面尚需進(jìn)一步培養(yǎng).課程目標(biāo)1.能用二倍角公式推導(dǎo)出半角公式,體會三角恒等變換的基本思想方法,以及進(jìn)行簡單的應(yīng)用. 2.了解三角恒等變換的特點(diǎn)、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進(jìn)行三角函數(shù)式的化簡、求值以及證明,進(jìn)而進(jìn)行簡單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學(xué)運(yùn)算:三角函數(shù)式的求值.
新知講授(一)——古典概型 對隨機(jī)事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個特征的試驗(yàn)稱為古典概型試驗(yàn),其數(shù)學(xué)模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點(diǎn)只有有限個;2、等可能性:每個樣本點(diǎn)發(fā)生的可能性相等。思考一:下面的隨機(jī)試驗(yàn)是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機(jī)選擇一名學(xué)生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學(xué)生,從中選擇一名學(xué)生,即樣本點(diǎn)是有限個;因?yàn)槭请S機(jī)選取的,所以選到每個學(xué)生的可能性都相等,因此這是一個古典概型。
本節(jié)通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡單問題。課程目標(biāo)1.了解二分法的原理及其適用條件.2.掌握二分法的實(shí)施步驟.3.通過用二分法求方程的近似解,使學(xué)生體會函數(shù)零點(diǎn)與方程根之間的聯(lián)系,初步形成用函數(shù)觀點(diǎn)處理問題的意識.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點(diǎn)近似值的步驟;3.數(shù)學(xué)運(yùn)算:求函數(shù)零點(diǎn)近似值;4.數(shù)學(xué)建模:通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用.
本節(jié)內(nèi)容是學(xué)生學(xué)習(xí)了任意角和弧度制,任意角的三角函數(shù)后,安排的一節(jié)繼續(xù)深入學(xué)習(xí)內(nèi)容,是求三角函數(shù)值、化簡三角函數(shù)式、證明三角恒等式的基本工具,是整個三角函數(shù)知識的基礎(chǔ),在教材中起承上啟下的作用。同時(shí),它體現(xiàn)的數(shù)學(xué)思想與方法在整個中學(xué)數(shù)學(xué)學(xué)習(xí)中起重要作用。課程目標(biāo)1.理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用.2.會利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡、求值與恒等式證明.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解同角三角函數(shù)基本關(guān)系式;2.邏輯推理: “sin α±cos α”同“sin αcos α”間的關(guān)系;3.數(shù)學(xué)運(yùn)算:利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡、求值與恒等式證明重點(diǎn):理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用; 難點(diǎn):會利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡、求值與恒等式證明.
《數(shù)學(xué)1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學(xué)生根據(jù)具體的函數(shù)圖象能夠借助計(jì)算機(jī)或信息技術(shù)工具計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數(shù)與方程之間的聯(lián)系;它既是本冊書中的重點(diǎn)內(nèi)容,又是對函數(shù)知識的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應(yīng)用,同時(shí)又為高中數(shù)學(xué)中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.通過具體實(shí)例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計(jì)算器用二分法求方程的近似解.3.會用二分法求一個函數(shù)在給定區(qū)間內(nèi)的零點(diǎn),從而求得方程的近似解. a.數(shù)學(xué)抽象:二分法的概念;b.邏輯推理:運(yùn)用二分法求近似解的原理;
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點(diǎn)B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內(nèi)不經(jīng)過交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質(zhì). 課程目標(biāo)1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正切函數(shù)的性質(zhì). 重點(diǎn):能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用; 難點(diǎn):掌握利用單位圓中正切函數(shù)定義得到其圖象.
由于三角函數(shù)是刻畫周期變化現(xiàn)象的數(shù)學(xué)模型,這也是三角函數(shù)不同于其他類型函數(shù)的最重要的地方,而且對于周期函數(shù),我們只要認(rèn)識清楚它在一個周期的區(qū)間上的性質(zhì),那么它的性質(zhì)也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來作圖,從畫出的圖形中觀察得出五個關(guān)鍵點(diǎn),得到“五點(diǎn)法”畫正弦函數(shù)、余弦函數(shù)的簡圖.課程目標(biāo)1.掌握“五點(diǎn)法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點(diǎn)法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯(lián)系. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯(lián)系; 3.直觀想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學(xué)運(yùn)算:五點(diǎn)作圖; 5.數(shù)學(xué)建模:通過正弦、余弦圖象圖像,解決不等式問題及零點(diǎn)問題,這正是數(shù)形結(jié)合思想方法的應(yīng)用.
本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點(diǎn)得出正弦函數(shù)、余弦函數(shù)的性質(zhì). 課程目標(biāo)1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會利用周期性定義和誘導(dǎo)公式求簡單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點(diǎn)等);5.能利用性質(zhì)解決一些簡單問題. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正、余弦函數(shù)的性質(zhì).重點(diǎn):通過正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質(zhì); 難點(diǎn):應(yīng)用正、余弦函數(shù)的性質(zhì)來求含有cosx,sinx的函數(shù)的單調(diào)性、最值、值域及對稱性.
指數(shù)函數(shù)與冪函數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)冪函數(shù)的基礎(chǔ)上通過實(shí)例總結(jié)歸納指數(shù)函數(shù)的概念,通過函數(shù)的三個特征解決一些與函數(shù)概念有關(guān)的問題.課程目標(biāo)1、通過實(shí)際問題了解指數(shù)函數(shù)的實(shí)際背景;2、理解指數(shù)函數(shù)的概念和意義.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:指數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學(xué)運(yùn)算:利用指數(shù)函數(shù)的概念求參數(shù);4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)指數(shù)函數(shù)概念.重點(diǎn):理解指數(shù)函數(shù)的概念和意義;難點(diǎn):理解指數(shù)函數(shù)的概念.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入在本章的開頭,問題(1)中時(shí)間 與GDP值中的 ,請問這兩個函數(shù)有什么共同特征.要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.
問題導(dǎo)入:問題一:試驗(yàn)1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因?yàn)閮擅队矌欧謩e拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計(jì)算試驗(yàn)1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗(yàn)中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點(diǎn)。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計(jì)算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗(yàn)2:一個袋子中裝有標(biāo)號分別是1,2,3,4的4個球,除標(biāo)號外沒有其他差異。
1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個底面積是S,側(cè)面展開圖是一個正方體,那么這個圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),D為BC的中點(diǎn),H,G分別是BD,CD的中點(diǎn),若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認(rèn)識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實(shí)驗(yàn)得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計(jì)總體時(shí)可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計(jì)每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計(jì)樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點(diǎn);(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點(diǎn)的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識點(diǎn),教師補(bǔ)充。 讓學(xué)生掌握本節(jié)課知識點(diǎn),并能夠靈活運(yùn)用。
新知探究:向量的減法運(yùn)算定義問題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進(jìn)行:減去一個向量相當(dāng)于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運(yùn)算? 問題八:非零共線向量怎樣做減法運(yùn)算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
學(xué)生在二年級的時(shí)候,就有了制訂自己班級規(guī)則的體驗(yàn),在此基礎(chǔ)上,學(xué)生閱讀教材第10頁和第11頁的圖文資料,看看應(yīng)當(dāng)怎樣制訂班規(guī)。接著,學(xué)生小組合作,找到合理制訂班規(guī)的程序、方法,再全班匯報(bào)交流,教師相機(jī)引導(dǎo)。然后,根據(jù)本班的具體情況,由教師帶領(lǐng)同學(xué)們一起討論,制訂適合自己班級的一些班規(guī)。板書:自己班的班規(guī)。設(shè)計(jì)意圖:引導(dǎo)學(xué)生了解合理制訂班規(guī)的合理方法,并一起制訂自己班的班規(guī)。環(huán)節(jié)三:課堂小結(jié),內(nèi)化提升學(xué)生談一談學(xué)習(xí)本節(jié)課的收獲,教師相機(jī)引導(dǎo)。設(shè)計(jì)意圖:梳理總結(jié),體驗(yàn)收獲與成功的喜悅,內(nèi)化提升學(xué)生的認(rèn)識與情感。環(huán)節(jié)四:布置作業(yè),課外延伸在今后的學(xué)習(xí)生活中,要自覺遵守自己制訂的班規(guī)。設(shè)計(jì)意圖:將課堂所學(xué)延伸到學(xué)生的日常生活中,有利于落實(shí)行為實(shí)踐。
2、確立教育優(yōu)先發(fā)展地位,提出“科教興國”戰(zhàn)略:①提出“三個面向”指導(dǎo)方針;(即教育要面向現(xiàn)代化,面向世界,面向未來)1983年,當(dāng)我們國家的改革開放處在起步階段時(shí),鄧小平同志以歷史的眼光,從戰(zhàn)略的高度,為北京景山學(xué)校題詞:“教育要面向現(xiàn)代化,面向世界,面向未來?!倍嗄陙?,這“三個面向”的題詞所蘊(yùn)含的深刻的教育理念,已經(jīng)成為中國教育改革與發(fā)展的指針,“三個面向”的思想,已經(jīng)深入人心;成為我們教育改革的旗幟和靈魂。②改革教育制度,基礎(chǔ)、中等和高等教育全面發(fā)展;基礎(chǔ)教育——普及九年義務(wù)教育,制定《義務(wù)教育法》(2006年)中等教育——實(shí)行普通教育與職業(yè)教育并舉;高等教育——增設(shè)邊緣學(xué)科,建立學(xué)位制,擴(kuò)大自主權(quán)③實(shí)施發(fā)展高等教育的“211工程”計(jì)劃;211工程"就是面向21世紀(jì),重點(diǎn)建設(shè)100所左右的高等學(xué)校和一批重點(diǎn)學(xué)科點(diǎn)。
最后,也借這個機(jī)會,向大家三點(diǎn)工作的要求:1.要始終秉持教學(xué)第一位的本位意識思政教育、專業(yè)教育、XX教育、知行教育、實(shí)踐教育、工程教育,這些所有的模塊構(gòu)成了我們學(xué)校人才培養(yǎng)體系,大家要始終秉持教學(xué)本位的理念,深刻研判國家、社會、學(xué)校人才培養(yǎng)的新形勢和新要求,不斷探索前沿高等教育先進(jìn)的教學(xué)理念和教學(xué)方法,持續(xù)推進(jìn)我校教育體系的完善與創(chuàng)新。2.XX教育應(yīng)加強(qiáng)團(tuán)隊(duì)協(xié)作XX教育建設(shè)并非閉門造車,我們在新工科新文科協(xié)同發(fā)展理念引導(dǎo)下,大力扶持文理滲透、理工交融的學(xué)科交叉融合,整合校內(nèi)多學(xué)科資源,建立開放、共享、交叉、融合的XX教育課程體系,這已成為我們學(xué)校XX教育建設(shè)導(dǎo)向,所以更需要大家加強(qiáng)團(tuán)隊(duì)協(xié)作,體現(xiàn)產(chǎn)教融合科教融匯、有組織科研有組織教研的一些集中成果。3.認(rèn)真踐行課堂革命教學(xué)改革
a矛盾的同一性是矛盾雙方相互吸引、相互聯(lián)結(jié)的屬性和趨勢。它有兩方面的含義:一是矛盾雙方相互依賴,一方的存在以另一方的存在為前提,雙方共處于一個統(tǒng)一體中;同一事物都有對立面和統(tǒng)一面兩個方面,一方的存在以另一方為條件,彼此誰都離不開誰(形影想隨、一個巴掌拍不響、不是冤家不聚頭)。【舉例】P67漫畫:他敢剪嗎?懸掛在山崖上的兩個人構(gòu)成一種動態(tài)的平衡?!九e例】磁鐵(S極和N極);沒有上就沒有下、沒有香就沒有臭、沒有福就無所謂禍;【舉例】父子關(guān)系(父親之所以是父親,因?yàn)橛袃鹤樱瑑鹤又允莾鹤?,因?yàn)橛懈赣H);師生關(guān)系;二是矛盾雙方相互貫通,即相互滲透、相互包含,在一定條件下可以相互轉(zhuǎn)化。 【相關(guān)銜接】P68生物變性現(xiàn)象,雌雄轉(zhuǎn)化現(xiàn)象【舉例】生產(chǎn)與消費(fèi)具有直接統(tǒng)一性
(一)知識目標(biāo)(1)識記中華 文化源遠(yuǎn)流長的主要見證是文字和史學(xué)典籍 ,文字的作用、意義 ,史學(xué)典籍 ,中華文化的包容性。(2)說明中華文化源遠(yuǎn)流長的發(fā)展過程,是世界上唯一沒有中斷的文明 ,漢字與史學(xué)典籍是中華文化源遠(yuǎn)流長和見證,如何再創(chuàng)中華文化新的輝煌(3)分析說明中華文化源遠(yuǎn)流長,是當(dāng)今世界上唯一沒有中斷的文明(二)能力目標(biāo)通過學(xué)生課外探究、信息資源的收集整合,培養(yǎng)學(xué)生的信息素養(yǎng)、實(shí)踐能力,激發(fā)學(xué)生的生活智慧與學(xué)習(xí)智慧、時(shí)代創(chuàng)新精神與團(tuán)隊(duì)合作精神。培養(yǎng)同學(xué)們綜合思維能力,全面、辯證、歷史地分析中華文化的基本特征。培養(yǎng)同學(xué)們辯證分析能力,辨析中華文化的區(qū)域特征,說明中華文化是中國各族人民共同創(chuàng)造的;展現(xiàn)源遠(yuǎn)流長的中華文化是中華民族延續(xù)和發(fā)展的重要標(biāo)識。
注:號碼代表自然帶類型【討論問題】(1)請將板圖中符號與你所在的自然帶“對號入座”(提問幾位同學(xué))。(2)哪些屬于溫帶森林?哪些屬于熱帶森林?(3)南半球缺少哪些自然帶?(4)氣 候類型相同而自然帶不同的是哪種氣候類型,哪些自然帶?(5)自然帶相同,氣候類型不同的是哪種自然帶,哪些氣候類型?(6)兩組同學(xué)“通道”之間所處的是什么自然帶?(答:過渡帶,說明自然帶沒有嚴(yán)格界線,整個自然界是非常和諧地過渡、相互聯(lián)系結(jié)成的有機(jī)整體)?!痉配浵衿俊陡髯匀粠Ь坝^》,看一段錄像增加感性認(rèn)識(教師可以使用自己編輯的錄像資料)?!緦W(xué)生討論】閱讀課本P98“世界陸地自然帶分布圖”了解自然 帶的基本分布情況:【學(xué)生回答】略。【教師總結(jié)】