The theme of this section is to learn how to make emergency calls. Students should learn how to make emergency calls not only in China, but also in foreign countries in English, so that they can be prepared for future situations outside the home.The emergency telephone number is a vital hotline, which should be the most clear, rapid and effective communication with the acute operator.This section helps students to understand the emergency calls in some countries and the precautions for making emergency calls. Through the study of this section, students can accumulate common expressions and sentence patterns in this context. 1.Help students accumulate emergency telephone numbers in different countries and learn more about first aid2.Guide the students to understand the contents and instructions of the telephone, grasp the characteristics of the emergency telephone and the requirements of the emergency telephone.3.Guide students to understand the first aid instructions of the operators.4.Enable Ss to make simulated emergency calls with their partners in the language they have learned1. Instruct students to grasp the key information and important details of the dialogue.2. Instruct students to conduct a similar talk on the relevant topic.Step1:Look and discuss:Match the pictures below to the medical emergencies, and then discuss the questions in groups.
1.認真做好本期開學工作。本期共有7個班的應用數學教學工作,全部為資源系的課,為確保全期教學工作科學合理,期初將集中精力備課,制定好各個班的教學計劃及教學進度,保證順利完成教學任務?! ?.認真配合系部、教務處做好開學后補考工作?! ?.研究學情,因材施教,確保教學質量。因為絕大多數學生數學基礎薄弱,學習習慣及學習自覺性欠佳。因此,教學過程中,應著重加強學生學法指導及學習能力的培養(yǎng),在新知識傳授過程中根據學生知識基礎有針對性地補充舊知識的復習準備,做到因材施教。認真做好備課、課堂、作業(yè)三個重點環(huán)節(jié)的工作,確保教學效果。
可以通過下面的步驟計算一組n個數據的第p百分位數:第一步:按從小到大排列原始數據;第二步:計算i=n×p%;第三步:若i不是整數,而大于i的比鄰整數位j,則第p百分位數為第j項數據;若i是整數,則第p百分位數為第i項與第i+1項的平均數。我們在初中學過的中位數,相當于是第50百分位數。在實際應用中,除了中位數外,常用的分位數還有第25百分位數,第75百分位數。這三個分位數把一組由小到大排列后的數據分成四等份,因此稱為四分位數。其中第25百分位數也稱為第一四分位數或下四分位數等,第75百分位數也稱為第三四分位數或上四分位數等。另外,像第1百分位數,第5百分位數,第95百分位數,和第99百分位數在統(tǒng)計中也經常被使用。例2、根據下列樣本數據,估計樹人中學高一年級女生第25,50,75百分位數。
問題二:上述問題中,甲、乙的平均數、中位數、眾數相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進行度量。根據上述數據計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數據的離散程度。由極差發(fā)現甲的成績波動范圍比乙的大。但由于極差只使用了數據中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數據離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數的射擊成績離平均成績不會太遠;相反,如果射擊的成績波動幅度很大,那么大多數的射擊成績離平均成績會比較遠。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。
(2)平均數受數據中的極端值(2個95)影響較大,使平均數在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數來估計每天的用水量更合適。1、樣本的數字特征:眾數、中位數和平均數;2、用樣本頻率分布直方圖估計樣本的眾數、中位數、平均數。(1)眾數規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標之積相加,就是樣本數據的估值平均數。學生回顧本節(jié)課知識點,教師補充。 讓學生掌握本節(jié)課知識點,并能夠靈活運用。
本節(jié)內容是復數的三角表示,是復數與三角函數的結合,是對復數的拓展延伸,這樣更有利于我們對復數的研究。1.數學抽象:利用復數的三角形式解決實際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學生的邏輯思維能力;3.數學建模:掌握復數的三角形式;4.直觀想象:利用復數三角形式解決一系列實際問題;5.數學運算:能夠正確運用復數三角形式計算復數的乘法、除法;6.數據分析:通過經歷提出問題—推導過程—得出結論—例題講解—練習鞏固的過程,讓學生認識到數學知識的邏輯性和嚴密性。復數的三角形式、復數三角形式乘法、除法法則及其幾何意義舊知導入:問題一:你還記得復數的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個要素來表示復數呢?如何表示?
新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。
本節(jié)通過學習用二分法求方程近似解的的方法,使學生體會函數與方程之間的關系,通過一些函數模型的實例,讓學生感受建立函數模型的過程和方法,體會函數在數學和其他學科中的廣泛應用,進一步認識到函數是描述客觀世界變化規(guī)律的基本數學模型,能初步運用函數思想解決一些生活中的簡單問題。課程目標1.了解二分法的原理及其適用條件.2.掌握二分法的實施步驟.3.通過用二分法求方程的近似解,使學生體會函數零點與方程根之間的聯(lián)系,初步形成用函數觀點處理問題的意識.數學學科素養(yǎng)1.數學抽象:二分法的概念;2.邏輯推理:用二分法求函數零點近似值的步驟;3.數學運算:求函數零點近似值;4.數學建模:通過一些函數模型的實例,讓學生感受建立函數模型的過程和方法,體會函數在數學和其他學科中的廣泛應用.
《數學1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學生根據具體的函數圖象能夠借助計算機或信息技術工具計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數與方程之間的聯(lián)系;它既是本冊書中的重點內容,又是對函數知識的拓展,既體現了函數在解方程中的重要應用,同時又為高中數學中函數與方程思想、數形結合思想、二分法的算法思想打下了基礎,因此決定了它的重要地位.發(fā)展學生數學直觀、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.通過具體實例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計算器用二分法求方程的近似解.3.會用二分法求一個函數在給定區(qū)間內的零點,從而求得方程的近似解. a.數學抽象:二分法的概念;b.邏輯推理:運用二分法求近似解的原理;
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設它們確定的平面為β,則B∈β, 由于經過點B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內不經過交點的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關系?并畫圖說明.解: 直線a與直線c的位置關系可以是平行、相交、異面.如圖(1)(2)(3).總結:判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內.
問題導入:問題一:試驗1:分別拋擲兩枚質地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因為兩枚硬幣分別拋擲,第一枚硬幣的拋擲結果與第二枚硬幣的拋擲結果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計算試驗1中的P(A),P(B),P(AB),你有什么發(fā)現?在該試驗中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗2:一個袋子中裝有標號分別是1,2,3,4的4個球,除標號外沒有其他差異。
1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關系?你能用圓柱、圓錐、圓臺的結構特征來解釋這種關系嗎?3.練習一圓柱的一個底面積是S,側面展開圖是一個正方體,那么這個圓柱的側面積是( )A 4πS B 2πS C πS D 4.練習二:如圖所示,在邊長為4的正三角形ABC中,E,F分別是AB,AC的中點,D為BC的中點,H,G分別是BD,CD的中點,若將正三角形ABC繞AD旋轉180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關系可以通過實驗得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
新知探究:向量的減法運算定義問題四:你能根據實數的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉化為向量的加法來進行:減去一個向量相當于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
2學情分析在這節(jié)課中,我恰當地運用多種教學手段,利用學生及教師自身的優(yōu)勢,在課堂上師生共同參與教學活動,充分發(fā)揮了學生的主體作用,使每個學生都成為學習活動的主人,從中獲得許多新鮮的感受。本設計從課題入手,設謎導入,通過畫一畫,引導學生抓住生肖動物的外形特征,要學生利用身邊各種材料,設計制作出自己喜愛的或自己的生肖工藝品,讓學生感受中國傳統(tǒng)文化的源遠流長。
一、導入師:今天看見一道題把老師給難住了,想大家?guī)蛶兔?同學們愿不愿意啊?生:愿意師:出示課件(看圖猜成語) 生:畫蛇添足、虎頭蛇尾師:看來大家的語文基礎還是很扎實了,謝謝大家的幫忙。大家有沒有發(fā)現剛才的兩個成語有一個共同點是什么?誰能告訴老師今年是什么年?去年是什么年?明年又是什么年?生:蛇年、龍年、馬年師:請把你知道的生肖年勇敢、大膽、完整的告訴大家 生:略師:今天就讓我們一起走進“十二生肖”的國度。 出示課件《十二生肖》
一、教材分析1.教材的地位和作用本節(jié)教材是北師大版六年級數學上冊第5章《數據的收集與整理》第3節(jié)的內容,這一章是《全日制義務教育數學課程標準(實驗稿)》第三學段“統(tǒng)計與概率”部分的第一章,也是基礎章節(jié)。它讓學生經歷數據的收集、整理、描述的過程,體會適當選擇統(tǒng)計圖表對描述實際問題的作用,為以后進一步學習統(tǒng)計的有關知識打下基礎2.學情分析學生在此之前已經在小學階段學習過有關統(tǒng)計圖表的知識,對三種統(tǒng)計圖也有了一定的認識和感知,會畫三種統(tǒng)計圖,但是對于究竟如何選取適當的統(tǒng)計圖去說明一些具體實際問題還存在一定困難,所以本節(jié)內容主要是讓學生對三種統(tǒng)計圖各自的特點和優(yōu)勢有一定的認識。3.教材重難點根據對教材的研讀和學生學情的分析,結合新課標對本節(jié)的要求,特將本節(jié)的重難點確定如下:
教師:D.C.是從記號處反復,那么D.S.呢?D.S.是從頭反復,到英文Fine結束。二者要區(qū)分開來,下次我們遇到再仔細講。教師:最后我們完整的演唱一遍這首歌曲,同學們的歌唱狀態(tài)準備好了嗎?怎么坐的?教師:同學們演唱的真不錯,從歌聲里啊就能感受到同學們對祖國的熱愛,對祖國未來的祝福之情。我對同學們的欣賞之情啊,猶如黃河泛濫,一發(fā)不可收拾。八、預備拓展方案:1. 這首歌曲對仗工整,相同點多,讓學生模仿歌詞自己編寫歌詞,然后演唱。2. 設計輪唱演唱形式。九、課堂小結:同學們,今天這堂課,同學們很積極,用深情地歌聲表達出對偉大祖國生日的祝福,同時我們也新學了一個音樂當中的知識點:D.S.從記號處反復記號。這堂課,老師很高興,送給在座的你們一句話:少年智,則國智;少年強,則國強;今天的課就上到這里,下課(播放音樂,學生走出教室。)
(五)合作學習、討論探究在突破本課的難點時,采用小組合作、探究的學習方法,通過小組討論完成下面的問題:(1).拎水的主題在音樂中出現了幾次?(2).它主要由什么樂器演奏?(3).每次在力度、速度和情緒上有什么變化?從而得出答案:隨著音樂情緒的發(fā)展,拎水的主題力度一次比一次強,速度一次比一次快,音樂情緒越來越緊張,象征著情況越來越危急!(六)課堂小結在這里,我提出了一個思考題:欣賞了童話交響詩《魔法師的弟子》,你從中明白了什么道理?通過這個思考題,將課內教學延伸到課外生活中,從而達到對學生的情感熏陶,品格陶冶。六、教學特色(一)充分利用視頻、字幕和圖片,結合故事情節(jié)將嚴肅、高雅、難以接近的交響音樂變得通俗、易懂,學生學習的興趣濃厚。(二)充分利用媒體,刺激學生的多種感官,視聽結合。學生在音樂審美的過程中能獲得愉悅的感受與積極的體驗。
四、說教法、學法我在教學中主要采用的教學方法是先學后教中的“兩學兩教”。輔之以多媒體教學手段(主要通過微課視頻的觀看學習)。本課學生的學習方法主要有:自主發(fā)現法、合作交流法、自學嘗試法等。1.學生在自主探究解答例題,求兩種品牌罐頭的合格率時,主要采用自學嘗試法,根據知識的遷移,學生能夠正確求出產品合格率。2.在總結小數、分數化成百分數的方法時,學生主要采用自主發(fā)現,合作交流的方法。首先讓學生觀察例題板書,想一想怎樣把小數、分數化成百分數,采用了“兵教兵”的方法,達到了人人參與的目的。當然,由于學生所處的文化環(huán)境,家庭背景和自身思維方式的不同,不同的學生所采用的方法也不盡相同,作為教師要尊重學生的選擇,允許學生用自己喜歡的方式學習數學。五、說教學過程
五、說教學過程 (一)創(chuàng)設情境,揭示課題。 以前面學習的課文《我的伯父魯迅先生》進行回顧導入,將學生再次帶入到魯迅逝世的場景中,感受人們對他的愛戴。適時補充本詩的寫作背景,奠定理解詩歌的感情基調,為學生理解內容做好鋪墊。 (二)誦讀全詩,整體感知。 給學生充足的時間讓學生自主探究,讀準字音,把詩句讀流暢。 播放朗讀音頻,學生傾聽,練習朗讀。指七名學生分節(jié)讀,教師隨機點撥。本首詩學生讀通順是沒問題的,但這首詩歌感情色彩強烈,愛憎分明,重點是要讀出感情。因此播放音頻朗讀,一是讓學生在傾聽中感受詩人的強烈感情,二是仿照練習,讀好節(jié)奏、聲調等,幫助在理解詩歌后更好地感情朗讀。 默讀并思考:這首詩在內容和寫法上你發(fā)現了有什么特別之處嗎? 引導學生感受詩歌對比和反復的特點,找出具體的對比內容,為后面的理解學習做好準備。