【情感態(tài)度及價值觀】 通過創(chuàng)設(shè)探究情境,展示典型顯示案例激發(fā)思考,與學生共同感受當前區(qū)域經(jīng)濟一體化與經(jīng)濟全球化浪潮的沖擊,以及當前我國、我省發(fā)展的機遇、成就和危機,培養(yǎng)學生的時代感和使命感。五、重點難點【重點】1、產(chǎn)業(yè)轉(zhuǎn)移的影響因素2、產(chǎn)業(yè)轉(zhuǎn)移對區(qū)域地理環(huán)境的影響【難點】1、如何從圖文材料中分析出影響產(chǎn)業(yè)轉(zhuǎn)移的主要因素2、產(chǎn)業(yè)轉(zhuǎn)移對產(chǎn)業(yè)遷出區(qū)和移入?yún)^(qū)的不同影響六、教學方法1、材料分析法。提供分層次的問題與材料,并進行方法指導(dǎo),學生通過思考和討論自行分析發(fā)現(xiàn)知識、構(gòu)建知識。使不同層次的學生均有發(fā)展。這是本節(jié)設(shè)計主要采用的教學方法。2、合作探究法3、多媒體教學法七、 教學過程(一) 引入 :假如某同學買彩票中大獎,想投資生產(chǎn)面臨幾項選擇1、投資高端智能手機制造還是普通服裝廠?2、廠址選擇在濮陽市還是南樂縣?
知識探究(一):普查與抽查像人口普查這樣,對每一個調(diào)查調(diào)查對象都進行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個調(diào)查中,我們把調(diào)查對象的全體稱為總體,組成總體的每一個調(diào)查對象稱為個體。為了強調(diào)調(diào)查目的,也可以把調(diào)查對象的某些指標的全體作為總體,每一個調(diào)查對象的相應(yīng)指標作為個體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經(jīng)常進行。為了及時掌握全國人口變動狀況,我國每年還會進行一次人口變動情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個體進行調(diào)查,并以此為依據(jù)對總體的情況作出估計和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數(shù)稱為樣本量。
2、講授新課:(35分鐘)通過教材第一目的講解,讓學生明白,生活和學習中有許多蘊涵哲學道理的故事,表明哲學并不神秘總結(jié)并過渡:生活也離不開哲學,哲學可以是我正確看待自然、人生、和社會的發(fā)展,從而指導(dǎo)人們正確的認識和改造世界。整個過程將伴隨著多媒體影像資料和生生對話討論以提高學生的積極性。3、課堂反饋,知識遷移。最后對本科課進行小結(jié),鞏固重點難點,將本課的哲學知識遷移到與生活相關(guān)的例子,實現(xiàn)對知識的升華以及學生的再次創(chuàng)新;可使學生更深刻地理解重點和難點,為下一框?qū)W習做好準備。4、板書設(shè)計我采用直觀板書的方法,對本課的知識網(wǎng)絡(luò)在多媒體上進行展示。盡可能的簡潔,清晰。使學生對知識框架一目了然,幫助學生構(gòu)建本課的知識結(jié)構(gòu)。5、布置作業(yè)我會留適當?shù)淖詼y題及教學案例讓同學們做課后練習和思考,檢驗學生對本課重點的掌握以及對難點的理解。并及時反饋。對學生在理解中仍有困難的知識點,我會在以后的教學中予以疏導(dǎo)。
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學生回顧本節(jié)課知識點,教師補充。 讓學生掌握本節(jié)課知識點,并能夠靈活運用。
本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對復(fù)數(shù)的拓展延伸,這樣更有利于我們對復(fù)數(shù)的研究。1.數(shù)學抽象:利用復(fù)數(shù)的三角形式解決實際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學生的邏輯思維能力;3.數(shù)學建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實際問題;5.數(shù)學運算:能夠正確運用復(fù)數(shù)三角形式計算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習鞏固的過程,讓學生認識到數(shù)學知識的邏輯性和嚴密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:問題一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個要素來表示復(fù)數(shù)呢?如何表示?
新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數(shù)學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。
可以通過下面的步驟計算一組n個數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項與第i+1項的平均數(shù)。我們在初中學過的中位數(shù),相當于是第50百分位數(shù)。在實際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計樹人中學高一年級女生第25,50,75百分位數(shù)。
問題導(dǎo)入:問題一:試驗1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因為兩枚硬幣分別拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計算試驗1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗2:一個袋子中裝有標號分別是1,2,3,4的4個球,除標號外沒有其他差異。
1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習一圓柱的一個底面積是S,側(cè)面展開圖是一個正方體,那么這個圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點,D為BC的中點,H,G分別是BD,CD的中點,若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實驗得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
由于這部分知識已要求學生在課前收集相關(guān)資料探討分析,,現(xiàn)在提供機會讓他們進行交流,充分發(fā)表各自的見解。所以,學生對這個知識掌握起來并不難。所以,我對這部分內(nèi)容不做太多的講解,只要做進一步的梳理,加深學生的理解即可。 第三是小結(jié)環(huán)節(jié) 在學生對西氣東輸工程的原因掌握之后進入的是小結(jié)環(huán)節(jié),這里我進一步提出問題:在西氣東輸工程段的建設(shè)中有沒有什么難關(guān)? 通過西氣東輸?shù)碾y度了解,間接的表現(xiàn)我國的科技的發(fā)展,增加學生的愛國情,同時也說明西氣東輸?shù)慕ǔ梢灿屑夹g(shù)這一原因。從而也完成了本課時的小結(jié)。 第四環(huán)節(jié)是作業(yè)布置 在這里要求學生課后預(yù)習本課剩下的內(nèi)容:思考西氣東輸對區(qū)域發(fā)展的影響以及為何要實施資源的跨區(qū)域調(diào)配。通過這樣的問題一方面為下節(jié)課學習奠定基礎(chǔ),另一方面體現(xiàn)本課學習從“個”到“類”從特殊到一般的過程。
問題導(dǎo)學類比橢圓幾何性質(zhì)的研究,你認為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
問題導(dǎo)學類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標準方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼?,求出此雙曲線的標準方程(精確到1m)解:設(shè)雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當?shù)钠矫嬷苯亲鴺讼担蠼乜贏BC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標準方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
3、討論問題二:我國、我市人口增長對環(huán)境有那些影響?教師:讓第三、第四組學生分別介紹、展示課前調(diào)查到的資料,說明人口增長對我國環(huán)境的影響、對三亞市環(huán)境的影響。學生:第三組學生派代表介紹人口增長過快對我國生態(tài)環(huán)境的影響。第四小組由學生自己主持“我市人口增長過快對三亞市生態(tài)環(huán)境的影響”討論會,匯報課前調(diào)查到的資料和討論,其它小組參與發(fā)言。教師:投影:課本圖6-2組織學生討論、補充和完善。學生:觀察老師投影圖片并進行討論,對圖片問題進行補充和完善。教學意圖:通過讓學生匯報、觀察、主持,能讓學生親身體驗,更深刻地理解人口增長對生態(tài)環(huán)境的影響,培養(yǎng)和提高學生的表達能力、觀察能力、主持會議的能力。4、討論問題三:怎樣協(xié)調(diào)人與環(huán)境的關(guān)系?教師:組織第五組學生進行匯報課前調(diào)查到的資料,交流、討論、發(fā)表意見和見解。學生:展示課件、圖片,匯報調(diào)查到的情況,提出合理建議。
通過列表對比法、歸納法、、多媒體輔助法等教學方法,突破理論性強、不宜理解的“3S”原理與區(qū)別的知識難點。學生更是學會運用圖表方法、高效記憶法、合作學習法等方法學習地理知識,增加學習能力。[幻燈片] “3S技術(shù)”的應(yīng)用:地理信息技術(shù)的應(yīng)用十分廣泛,從實際身旁的社會生產(chǎn)生活,到地理學的區(qū)域地理環(huán)境研究。學生的年齡和認知范圍決定,此部分的案例教學的運用,前者容易接觸到、簡單直觀、易區(qū)分掌握“3S”技術(shù)特點和具體應(yīng)用。而后者涉及地理學科的綜合性和區(qū)域性的特點,難度較大。針對學情特點,我多以前者案例入手學習,以后者案例加以補充。案例:遙感:(1)視頻 專家解說衛(wèi)星遙感受災(zāi)影象(2)教材 圖1.6 1998年8月28日洞庭湖及荊江地區(qū)衛(wèi)星遙感圖像(3)視頻 2008年5月13日“北京一號”衛(wèi)星提供汶川的災(zāi)區(qū)遙感圖像(4)教材 閱讀 遙感在農(nóng)業(yè)方面的應(yīng)用
一、教材分析(一)說本框題的地位與作用《樹立創(chuàng)新意識是唯物辯證法的要求》是人教版教材高二《生活與哲學》第三單元第十課的第一框題,該部分的內(nèi)容實質(zhì)上是在闡述辯證法的革命批判精神和否定之否定規(guī)律。是第三單元思想方法與創(chuàng)新意識》的重點和核心之一。學好這部分的知識對于學生進一步理解辯證法的思維方法,樹立創(chuàng)新意識起著重要的作用。(二)說教學目標根據(jù)課程標準和課改精神,在教學中確定如下三維目標:1、知識目標:辯證否定觀的內(nèi)涵,辯證法的本質(zhì)。辯證否定是自我否定,辯證否定觀與書本知識和權(quán)威思想的關(guān)系,辯證法的革命批判精神與創(chuàng)新意識的關(guān)系,分析辯證否定的實質(zhì)是"揚棄",是既肯定又否定;既克服又保留。深刻理解辯證法的革命批判精神,分析為什么辯證法的革命批判精神同創(chuàng)新意識息息相關(guān)。
(二)說學法指導(dǎo)把“學習的主動權(quán)還給學生”,倡導(dǎo)“自主、合作、探究”的學習方式,因而,我在教學過程中特別重視創(chuàng)造學生自主參與,合作交流的機會,充分利用學生已獲得的生活體驗,通過相關(guān)現(xiàn)象的再現(xiàn),激發(fā)學生主動參與,積極思考,分析現(xiàn)象背后的哲學理論依據(jù),幫助學生樹立批判精神和創(chuàng)新意識,從而增強教學效果,讓學生在自己思維的活躍中領(lǐng)會本節(jié)課的重點難點。(三)說教學手段:我運用多媒體輔助教學,展示富有感染力的各種現(xiàn)象和場景,營造一個形象生動的課堂氣氛。三、說教學過程教學過程堅持"情境探究法",分為"導(dǎo)入新課——推進新課——走進生活"三個層次,環(huán)環(huán)相扣,逐步推進,幫助學生完成由感性認識到理性認識的飛躍。下面我重點簡述一下對教學過程的設(shè)計。