由于這部分知識(shí)已要求學(xué)生在課前收集相關(guān)資料探討分析,,現(xiàn)在提供機(jī)會(huì)讓他們進(jìn)行交流,充分發(fā)表各自的見解。所以,學(xué)生對(duì)這個(gè)知識(shí)掌握起來(lái)并不難。所以,我對(duì)這部分內(nèi)容不做太多的講解,只要做進(jìn)一步的梳理,加深學(xué)生的理解即可。 第三是小結(jié)環(huán)節(jié) 在學(xué)生對(duì)西氣東輸工程的原因掌握之后進(jìn)入的是小結(jié)環(huán)節(jié),這里我進(jìn)一步提出問(wèn)題:在西氣東輸工程段的建設(shè)中有沒(méi)有什么難關(guān)? 通過(guò)西氣東輸?shù)碾y度了解,間接的表現(xiàn)我國(guó)的科技的發(fā)展,增加學(xué)生的愛國(guó)情,同時(shí)也說(shuō)明西氣東輸?shù)慕ǔ梢灿屑夹g(shù)這一原因。從而也完成了本課時(shí)的小結(jié)。 第四環(huán)節(jié)是作業(yè)布置 在這里要求學(xué)生課后預(yù)習(xí)本課剩下的內(nèi)容:思考西氣東輸對(duì)區(qū)域發(fā)展的影響以及為何要實(shí)施資源的跨區(qū)域調(diào)配。通過(guò)這樣的問(wèn)題一方面為下節(jié)課學(xué)習(xí)奠定基礎(chǔ),另一方面體現(xiàn)本課學(xué)習(xí)從“個(gè)”到“類”從特殊到一般的過(guò)程。
問(wèn)題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱。x軸、y軸是雙曲線的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長(zhǎng)為2a,a叫做實(shí)半軸長(zhǎng);線段B_1 B_2 叫做雙曲線的虛軸,它的長(zhǎng)為2b,b叫做雙曲線的虛半軸長(zhǎng)。(3)實(shí)軸與虛軸等長(zhǎng)的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
問(wèn)題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過(guò)程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說(shuō)明拋物線向右上方和右下方無(wú)限延伸.拋物線是無(wú)界曲線.2. 對(duì)稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋物線的軸.拋物線只有一條對(duì)稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長(zhǎng)軸長(zhǎng)是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長(zhǎng)軸長(zhǎng)、半短軸長(zhǎng)、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長(zhǎng)軸長(zhǎng)為10,半短軸長(zhǎng)為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長(zhǎng)軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒(méi)有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱軸或與對(duì)稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過(guò)拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過(guò)點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過(guò)對(duì)稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過(guò)旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過(guò)雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問(wèn)題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來(lái)處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過(guò)右焦點(diǎn)F2,所以,直線AB的方程為
3、討論問(wèn)題二:我國(guó)、我市人口增長(zhǎng)對(duì)環(huán)境有那些影響?教師:讓第三、第四組學(xué)生分別介紹、展示課前調(diào)查到的資料,說(shuō)明人口增長(zhǎng)對(duì)我國(guó)環(huán)境的影響、對(duì)三亞市環(huán)境的影響。學(xué)生:第三組學(xué)生派代表介紹人口增長(zhǎng)過(guò)快對(duì)我國(guó)生態(tài)環(huán)境的影響。第四小組由學(xué)生自己主持“我市人口增長(zhǎng)過(guò)快對(duì)三亞市生態(tài)環(huán)境的影響”討論會(huì),匯報(bào)課前調(diào)查到的資料和討論,其它小組參與發(fā)言。教師:投影:課本圖6-2組織學(xué)生討論、補(bǔ)充和完善。學(xué)生:觀察老師投影圖片并進(jìn)行討論,對(duì)圖片問(wèn)題進(jìn)行補(bǔ)充和完善。教學(xué)意圖:通過(guò)讓學(xué)生匯報(bào)、觀察、主持,能讓學(xué)生親身體驗(yàn),更深刻地理解人口增長(zhǎng)對(duì)生態(tài)環(huán)境的影響,培養(yǎng)和提高學(xué)生的表達(dá)能力、觀察能力、主持會(huì)議的能力。4、討論問(wèn)題三:怎樣協(xié)調(diào)人與環(huán)境的關(guān)系?教師:組織第五組學(xué)生進(jìn)行匯報(bào)課前調(diào)查到的資料,交流、討論、發(fā)表意見和見解。學(xué)生:展示課件、圖片,匯報(bào)調(diào)查到的情況,提出合理建議。
通過(guò)列表對(duì)比法、歸納法、、多媒體輔助法等教學(xué)方法,突破理論性強(qiáng)、不宜理解的“3S”原理與區(qū)別的知識(shí)難點(diǎn)。學(xué)生更是學(xué)會(huì)運(yùn)用圖表方法、高效記憶法、合作學(xué)習(xí)法等方法學(xué)習(xí)地理知識(shí),增加學(xué)習(xí)能力。[幻燈片] “3S技術(shù)”的應(yīng)用:地理信息技術(shù)的應(yīng)用十分廣泛,從實(shí)際身旁的社會(huì)生產(chǎn)生活,到地理學(xué)的區(qū)域地理環(huán)境研究。學(xué)生的年齡和認(rèn)知范圍決定,此部分的案例教學(xué)的運(yùn)用,前者容易接觸到、簡(jiǎn)單直觀、易區(qū)分掌握“3S”技術(shù)特點(diǎn)和具體應(yīng)用。而后者涉及地理學(xué)科的綜合性和區(qū)域性的特點(diǎn),難度較大。針對(duì)學(xué)情特點(diǎn),我多以前者案例入手學(xué)習(xí),以后者案例加以補(bǔ)充。案例:遙感:(1)視頻 專家解說(shuō)衛(wèi)星遙感受災(zāi)影象(2)教材 圖1.6 1998年8月28日洞庭湖及荊江地區(qū)衛(wèi)星遙感圖像(3)視頻 2008年5月13日“北京一號(hào)”衛(wèi)星提供汶川的災(zāi)區(qū)遙感圖像(4)教材 閱讀 遙感在農(nóng)業(yè)方面的應(yīng)用
【這部分的設(shè)計(jì)目的,要學(xué)生明白熱帶雨林只是一個(gè)案例,我們的目的是要合理開發(fā)和保護(hù)全世界的森林。由森林的開發(fā)與保護(hù)來(lái)明確區(qū)域發(fā)展過(guò)程中產(chǎn)生的環(huán)境問(wèn)題,危害及治理保護(hù)措施?!咳缓笾R(shí)遷移——東北林區(qū)的開發(fā)與保護(hù)介紹東北地區(qū)的森林材料:東北林區(qū)是我國(guó)最大的天然林區(qū),主要分布于大、小興安嶺及長(zhǎng)白山地,在平衡大氣成分、凈化空氣、補(bǔ)給土壤有機(jī)質(zhì)、涵養(yǎng)水源、保持水土、改善地方氣候有重要的作用。它還是我國(guó)最大的采伐基地,宜林地區(qū)廣,森林樹種豐富。 東北林區(qū)開發(fā)中的問(wèn)題及影響點(diǎn)撥:由于人類的嚴(yán)重超采,采育脫節(jié),亂砍濫伐,毀林開荒,再加上森林火災(zāi),東北林區(qū)的面積在銳減,帶來(lái)了嚴(yán)重的生態(tài)惡化。我們?cè)撊绾伍_發(fā)和保護(hù)東北地區(qū)的森林呢?
(二)說(shuō)學(xué)法指導(dǎo)把“學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生”,倡導(dǎo)“自主、合作、探究”的學(xué)習(xí)方式,因而,我在教學(xué)過(guò)程中特別重視創(chuàng)造學(xué)生自主參與,合作交流的機(jī)會(huì),充分利用學(xué)生已獲得的生活體驗(yàn),通過(guò)相關(guān)現(xiàn)象的再現(xiàn),激發(fā)學(xué)生主動(dòng)參與,積極思考,分析現(xiàn)象背后的哲學(xué)理論依據(jù),幫助學(xué)生樹立批判精神和創(chuàng)新意識(shí),從而增強(qiáng)教學(xué)效果,讓學(xué)生在自己思維的活躍中領(lǐng)會(huì)本節(jié)課的重點(diǎn)難點(diǎn)。(三)說(shuō)教學(xué)手段:我運(yùn)用多媒體輔助教學(xué),展示富有感染力的各種現(xiàn)象和場(chǎng)景,營(yíng)造一個(gè)形象生動(dòng)的課堂氣氛。三、說(shuō)教學(xué)過(guò)程教學(xué)過(guò)程堅(jiān)持"情境探究法",分為"導(dǎo)入新課——推進(jìn)新課——走進(jìn)生活"三個(gè)層次,環(huán)環(huán)相扣,逐步推進(jìn),幫助學(xué)生完成由感性認(rèn)識(shí)到理性認(rèn)識(shí)的飛躍。下面我重點(diǎn)簡(jiǎn)述一下對(duì)教學(xué)過(guò)程的設(shè)計(jì)。
一、教材分析(一)說(shuō)本框題的地位與作用《樹立創(chuàng)新意識(shí)是唯物辯證法的要求》是人教版教材高二《生活與哲學(xué)》第三單元第十課的第一框題,該部分的內(nèi)容實(shí)質(zhì)上是在闡述辯證法的革命批判精神和否定之否定規(guī)律。是第三單元思想方法與創(chuàng)新意識(shí)》的重點(diǎn)和核心之一。學(xué)好這部分的知識(shí)對(duì)于學(xué)生進(jìn)一步理解辯證法的思維方法,樹立創(chuàng)新意識(shí)起著重要的作用。(二)說(shuō)教學(xué)目標(biāo)根據(jù)課程標(biāo)準(zhǔn)和課改精神,在教學(xué)中確定如下三維目標(biāo):1、知識(shí)目標(biāo):辯證否定觀的內(nèi)涵,辯證法的本質(zhì)。辯證否定是自我否定,辯證否定觀與書本知識(shí)和權(quán)威思想的關(guān)系,辯證法的革命批判精神與創(chuàng)新意識(shí)的關(guān)系,分析辯證否定的實(shí)質(zhì)是"揚(yáng)棄",是既肯定又否定;既克服又保留。深刻理解辯證法的革命批判精神,分析為什么辯證法的革命批判精神同創(chuàng)新意識(shí)息息相關(guān)。
本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時(shí)間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時(shí)的知識(shí)儲(chǔ)備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來(lái)一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個(gè)概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問(wèn)題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點(diǎn)之一,而必要條件的定義又是本節(jié)內(nèi)容的難點(diǎn).A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會(huì)判斷命題的充分條件、必要條件、充要條件.C.通過(guò)學(xué)習(xí),使學(xué)生明白對(duì)條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因?yàn)閜是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡(jiǎn)p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實(shí)數(shù)a的取值范圍.【答案】見解析【解析】因?yàn)椤皒∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識(shí)及解題技巧
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1》5.6.2節(jié) 函數(shù)y=Asin(ωx+φ)的圖象通過(guò)圖象變換,揭示參數(shù)φ、ω、A變化時(shí)對(duì)函數(shù)圖象的形狀和位置的影響。通過(guò)引導(dǎo)學(xué)生對(duì)函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律的探索,讓學(xué)生體會(huì)到由簡(jiǎn)單到復(fù)雜、由特殊到一般的化歸思想;并通過(guò)對(duì)周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點(diǎn)的突破,讓學(xué)生學(xué)會(huì)抓住問(wèn)題的主要矛盾來(lái)解決問(wèn)題的基本思想方法;通過(guò)對(duì)參數(shù)φ、ω、A的分類討論,讓學(xué)生深刻認(rèn)識(shí)圖象變換與函數(shù)解析式變換的內(nèi)在聯(lián)系。通過(guò)圖象變換和“五點(diǎn)”作圖法,正確找出函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律,這也是本節(jié)課的重點(diǎn)所在。提高學(xué)生的推理能力。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。
等式性質(zhì)與不等式性質(zhì)是高中數(shù)學(xué)的主要內(nèi)容之一,在高中數(shù)學(xué)中占有重要地位,它是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng),有著重要的實(shí)際意義.同時(shí)等式性質(zhì)與不等式性質(zhì)也為學(xué)生以后順利學(xué)習(xí)基本不等式起到重要的鋪墊.課程目標(biāo)1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運(yùn)用其解決簡(jiǎn)單的問(wèn)題.2. 進(jìn)一步掌握作差、作商、綜合法等比較法比較實(shí)數(shù)的大?。?3. 通過(guò)教學(xué)培養(yǎng)學(xué)生合作交流的意識(shí)和大膽猜測(cè)、樂(lè)于探究的良好思維品質(zhì)。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學(xué)運(yùn)算:比較多項(xiàng)式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項(xiàng)式的取值范圍,許將單項(xiàng)式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學(xué)建模:運(yùn)用類比的思想有等式的基本性質(zhì)猜測(cè)不等式的基本性質(zhì)。
(4)“不論m取何實(shí)數(shù),方程x2+2x-m=0都有實(shí)數(shù)根”是全稱量詞命題,其否定為“存在實(shí)數(shù)m0,使得方程x2+2x-m0=0沒(méi)有實(shí)數(shù)根”,它是真命題.解題技巧:(含有一個(gè)量詞的命題的否定方法)(1)一般地,寫含有一個(gè)量詞的命題的否定,首先要明確這個(gè)命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應(yīng)結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時(shí)否定結(jié)論.(2)對(duì)于省略量詞的命題,應(yīng)先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來(lái)寫出命題的否定.跟蹤訓(xùn)練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個(gè)實(shí)數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過(guò)點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).
情景導(dǎo)入:......運(yùn)用情景營(yíng)造氣氛,激發(fā)學(xué)生的求知欲望,幫助學(xué)生聯(lián)系現(xiàn)實(shí)問(wèn)題,學(xué)習(xí)歷史,拉近歷史與現(xiàn)實(shí)的距離,引導(dǎo)學(xué)生關(guān)注時(shí)政熱點(diǎn),關(guān)心國(guó)家大事。自主學(xué)習(xí):組織學(xué)生閱讀課文,老師參與學(xué)生閱讀活動(dòng)并板書知識(shí)結(jié)構(gòu)。通過(guò)學(xué)生自主學(xué)習(xí),培養(yǎng)學(xué)生自學(xué)能力,為進(jìn)一步好好學(xué)習(xí)打下基礎(chǔ)。交流學(xué)習(xí):學(xué)生自學(xué)以后,老師引導(dǎo)學(xué)生相互交流自學(xué)成果,學(xué)生自主提出問(wèn)題,相互解答,從而達(dá)到生生互動(dòng)、師生互動(dòng),在互動(dòng)中學(xué)習(xí),共同提高
1、教材分析 本課選自普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材,人民教育出版社歷史必修(1),第六單元:現(xiàn)代中國(guó)的政治建設(shè)與祖國(guó)統(tǒng)一,第22課——祖國(guó)統(tǒng)一大業(yè)。祖國(guó)統(tǒng)一始終是中國(guó)人民的共同夙愿。本課內(nèi)容主要敘述了“一國(guó)兩制”的偉大構(gòu)想,為完成祖國(guó)統(tǒng)一大業(yè)提出了一個(gè)創(chuàng)造性的指導(dǎo)方針。香港、澳門的回歸,是“一國(guó)兩制” 偉大構(gòu)想的成功實(shí)踐。在“一國(guó)兩制”方針指導(dǎo)下,海峽兩岸實(shí)現(xiàn)了一次歷史性的突破。揭示了“一國(guó)兩制” 的構(gòu)想,對(duì)推動(dòng)完成祖國(guó)完全統(tǒng)一大業(yè),實(shí)現(xiàn)中華民族偉大復(fù)興具有現(xiàn)實(shí)指導(dǎo)意義。 2、學(xué)情分析通過(guò)調(diào)查知道,學(xué)生對(duì)本節(jié)的基本史實(shí)有一定了解。但是,高一新生習(xí)慣于知識(shí)的記憶和教師的講解,不能深入分析歷史現(xiàn)象的內(nèi)涵和外延;不能進(jìn)一步探究事物的因果關(guān)系和理解事物的本質(zhì);并且需要進(jìn)一步拓展思維的廣度和深度,實(shí)現(xiàn)從一維目標(biāo)到三維目標(biāo)的飛躍。