提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

《鼓手的戰(zhàn)爭》教案

  • 人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計

    情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀)上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 圓的一般方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓的一般方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    情境導(dǎo)學(xué)前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點斜式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的點斜式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的兩點式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的兩點式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 人教版高中數(shù)學(xué)選修3離散型隨機變量的方差教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機變量的方差教學(xué)設(shè)計

    3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔風險的投資者,投資A項目更合適.

  • 人教版高中數(shù)學(xué)選修3離散型隨機變量的均值教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3離散型隨機變量的均值教學(xué)設(shè)計

    對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關(guān)事件的概率。但在實際問題中,有時我們更感興趣的是隨機變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測驗中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績是否“兩極分化”則需要考察這個班數(shù)學(xué)成績的方差。我們還常常希望直接通過數(shù)字來反映隨機變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運動員射中目標靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運動員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.

  • 直線的一般式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的一般式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項和公式(2)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項和公式(2)教學(xué)設(shè)計

    課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應(yīng)安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項和為S_n。

  • 人教版高中數(shù)學(xué)選擇性必修二函數(shù)的單調(diào)性(1)  教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二函數(shù)的單調(diào)性(1) 教學(xué)設(shè)計

    1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點的導(dǎo)數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示

  • 人教版高中數(shù)學(xué)選修3二項式系數(shù)的性質(zhì)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3二項式系數(shù)的性質(zhì)教學(xué)設(shè)計

    1.對稱性與首末兩端“等距離”的兩個二項式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當k(n+1)/2時,C_n^k隨k的增加而減小.當n是偶數(shù)時,中間的一項C_n^(n/2)取得最大值;當n是奇數(shù)時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項式系數(shù)最大的項為 ,在(a+b)9的展開式中,二項式系數(shù)最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數(shù)最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數(shù)最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 人教部編版道德與法制二年級上冊裝扮我們的教室說課稿

    人教部編版道德與法制二年級上冊裝扮我們的教室說課稿

    學(xué)習設(shè)計的前三步,體現(xiàn)了深度學(xué)習,學(xué)生經(jīng)歷了一個“觀察——分析——思考——創(chuàng)新——遷移運用”的過程。另外,在設(shè)計的過程中,體現(xiàn)了德育課程一體化,既滲透了環(huán)保理念,又將學(xué)生的課堂活動與學(xué)校特色相整合。 第二課時屬于實地操作,分為三個環(huán)節(jié)(一)依據(jù)藍圖,小組行動根據(jù)上節(jié)課商討結(jié)果,以小組為單位進行實地裝扮。(二)發(fā)現(xiàn)問題,解決問題引導(dǎo)學(xué)生在實踐操作的過程中及時發(fā)現(xiàn)問題,并組內(nèi)協(xié)商解決,增強團隊意識。(三)評比選優(yōu),交流分享教師帶領(lǐng)學(xué)生一起參觀并進行評價,選出“最優(yōu)設(shè)計團隊”?;顒咏Y(jié)束后,分享活 動感受,體會團結(jié)合作的意義。 本課時的三個環(huán)節(jié)讓學(xué)生在真實的生活情境中去體驗,獲得真實感受,這是深度學(xué)習的重要方面。在這個過程中,學(xué)生能夠?qū)⒌赖抡J知和道德情感落實到行動中去,真正提升了學(xué)生的道德行為能力。

  • 公司主題教育總結(jié):主題教育開展情況的匯報材料(階段性總結(jié))

    公司主題教育總結(jié):主題教育開展情況的匯報材料(階段性總結(jié))

    一、主要工作開展情況公司D委聚力在組織謀劃、宣傳發(fā)動、理論學(xué)習上先學(xué)先行,在摸清問題、調(diào)查研究、檢視整改上先破后立,以五個“先一步”推動ZT教育“第一步”走得實、走得穩(wěn),實現(xiàn)良好開局。一是堅持先謀一步,確保組織領(lǐng)導(dǎo)到位。按照xx集團D委學(xué)習貫徹新時代中國特色社會主義思想ZT教育工作會議精神和ZT教育實施方案等相關(guān)要求,公司D委提前謀劃、精心組織,牢牢把準集團D委部署要求,第一時間研究制訂《中共xx有限公司委員會學(xué)習貫徹新時代中國特色社會主義思想ZT教育工作方案》,明確重點抓好理論學(xué)習、調(diào)查研究、推動發(fā)展、檢視整改、建章立制等5項重點任務(wù)。方案注重整合D建、安全、經(jīng)營、發(fā)展等核心部門力量,突出“五個一”特點,體現(xiàn)抓好學(xué)習這一主線,用好調(diào)研這一抓手,聚焦發(fā)展這一中心,突出問題這一導(dǎo)向,深化制度這一目標。

  • 校領(lǐng)導(dǎo)在2024年XX教育工作總結(jié)表彰暨教學(xué)能力培訓(xùn)會上的講話

    校領(lǐng)導(dǎo)在2024年XX教育工作總結(jié)表彰暨教學(xué)能力培訓(xùn)會上的講話

    最后,也借這個機會,向大家三點工作的要求:1.要始終秉持教學(xué)第一位的本位意識思政教育、專業(yè)教育、XX教育、知行教育、實踐教育、工程教育,這些所有的模塊構(gòu)成了我們學(xué)校人才培養(yǎng)體系,大家要始終秉持教學(xué)本位的理念,深刻研判國家、社會、學(xué)校人才培養(yǎng)的新形勢和新要求,不斷探索前沿高等教育先進的教學(xué)理念和教學(xué)方法,持續(xù)推進我校教育體系的完善與創(chuàng)新。2.XX教育應(yīng)加強團隊協(xié)作XX教育建設(shè)并非閉門造車,我們在新工科新文科協(xié)同發(fā)展理念引導(dǎo)下,大力扶持文理滲透、理工交融的學(xué)科交叉融合,整合校內(nèi)多學(xué)科資源,建立開放、共享、交叉、融合的XX教育課程體系,這已成為我們學(xué)校XX教育建設(shè)導(dǎo)向,所以更需要大家加強團隊協(xié)作,體現(xiàn)產(chǎn)教融合科教融匯、有組織科研有組織教研的一些集中成果。3.認真踐行課堂革命教學(xué)改革

  • 備課組長在集團教學(xué)工作推進會上的發(fā)言范文

    備課組長在集團教學(xué)工作推進會上的發(fā)言范文

    作為備課組長,必須認識到教師的勞動,既是個體的創(chuàng)造性努力,需要發(fā)揮個人的才智,又要依靠集體的合作,需要群策群力。開學(xué)初始,我會早早制定切實可行的備課組活動計劃,教學(xué)進度計劃,從內(nèi)容的確定、人員的安排、活動形式的組織等方面都進行了詳細的安排。所有工作的安排盡量做到公平公正,如果某位老師做某項工作有困難,我會及時調(diào)整計劃安排。在計劃實施過程中,我會采取隨機聽課,檢查教師批改作業(yè)情況等方式,嚴格監(jiān)督組內(nèi)成員是否按照計劃執(zhí)行。

  • 關(guān)于我和我的祖國愛國教育電影觀后感心得例文

    關(guān)于我和我的祖國愛國教育電影觀后感心得例文

    《前夜》講述的是在新中國成立建國前夕,為了保證毛主席在開國大典時能夠順利按動電鈕,讓第一面五星紅旗在天安門廣場升起,無數(shù)人在背后默默奉獻的故事。這一面紅旗不僅僅只是一塊紅布,這是二十八年革命,兩千萬人的犧牲所換來的紅旗,所以他們要做的就是保證在升旗的時候——萬無一失??墒瞧谧铌P(guān)鍵的時刻卻出現(xiàn)了問題,而在材料有限、時間緊急的情況下他們不得不向人民求助。之后,源源不斷的人帶著自己認為有幫助的東西來了。有愿意捐出自己珍貴lu音機的大漢、有拿出自己煙袋鍋的大爺、有把自己勺子帶過來的廚師、還有愿意拿出自己孩子長命鎖的婦人,還有清華大學(xué)化學(xué)系的教授……最后問題終于順利解決,這靠的是大家的共同努力、和希望為祖國盡一份自己力量的心。雖然那時的中國貧窮、技術(shù)也落后,但中國人民不會退縮,只會迎難而上使自己變得更強。

  • 高中思想政治人教版必修三《文化創(chuàng)新的途徑》說課稿

    高中思想政治人教版必修三《文化創(chuàng)新的途徑》說課稿

    二、說學(xué)情本課的教學(xué)對象為高二學(xué)生,他們思維活躍已具備一定歸納能力和分析、綜合能力,能夠自主地分析現(xiàn)實生活中的一些文化行為,但看問題往往比較偏激、片面,缺乏良好的邏輯思維能力。所以,在文化創(chuàng)新的途徑上要對他們進行指導(dǎo),以免走入誤區(qū)。三、教學(xué)目標根據(jù)新課程標準、教材特點、學(xué)生的實際,我確定了如下教學(xué)目標:【知識與能力目標】1.理解文化創(chuàng)新的根本途徑和兩個基本途徑;2.了解文化創(chuàng)新過程中需要堅持正確方向,克服錯誤傾向。

  • 高中歷史人教版必修一《第2課秦朝中央集權(quán)制度的形成》說課稿

    高中歷史人教版必修一《第2課秦朝中央集權(quán)制度的形成》說課稿

    【課件展示】《秦朝中央集權(quán)制度的建立》《教材簡析》《教學(xué)目標》《教法簡介》《教學(xué)過程設(shè)計及特色簡述》【師】本節(jié)內(nèi)容以秦代政治體制和官僚系統(tǒng)的建立為核心內(nèi)容,主要包括秦朝中央集權(quán)制的建立的背景、建立過程及影響。本節(jié)內(nèi)容在整個單元中起到承前啟后的作用,在整個模塊中也有相當重要的地位。讓學(xué)生了解中國古代中央集權(quán)政治體制的初建對于理解我國古代政治制度的發(fā)展乃至我們今天的政治體制是十分必要的。 本堂課我采用多媒體和講授法及歷史辯論法相結(jié)合,通過巧妙設(shè)計問題情境,調(diào)動學(xué)生的學(xué)習積極性,使學(xué)生主動學(xué)習,探究思考。教師引導(dǎo)和組織學(xué)生采取小組討論、情景體驗等方式,達到教學(xué)目標。 本節(jié)內(nèi)容分三個部分,下面首先看秦朝中央集權(quán)制度建立的前提即秦的統(tǒng)一

  • 小學(xué)美術(shù)桂美版一年級上冊《第10課神奇的果樹》教學(xué)設(shè)計說課稿

    小學(xué)美術(shù)桂美版一年級上冊《第10課神奇的果樹》教學(xué)設(shè)計說課稿

    2學(xué)情分析 新入學(xué)的學(xué)生第一次接觸正規(guī)化的美術(shù)課,對一年級學(xué)生來說是新 奇、有趣、好玩的,而且新生入學(xué)前所受的教育各不相同,心理因素 也不一樣,在繪畫上、工藝制作上一定有著自己的創(chuàng)造思維、想象能 力和自己的個性,但這些會造成學(xué)習的不一致性、習慣不統(tǒng)一化,給 美術(shù)課的課堂帶來不必要的麻煩。因此, 對待這些剛進入課堂的小朋友, 我們在情感態(tài)度上要做出很大 的努力,小學(xué)生在思維的想象力、創(chuàng)造力方面發(fā)展的空間很大,所以 我們要好好把握機會, 激發(fā)孩子們對美術(shù)學(xué)習的興趣,讓孩子們能發(fā) 現(xiàn)美,有創(chuàng)造美的想法。

上一頁123...221222223224225226227228229230231232下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!